Genotypic, physiological and biochemical features of Desulfovibrio strains in a sulfidogenic microbial community isolated from the soil of ferrosphere

Nataliia Tkachuk, Liubov Zelena, Pavlo Mazur, Oleksandr Lukash, Oleksandr Lukash

DOI: http://dx.doi.org/10.12775/EQ.2020.016

Abstract


The purpose of this work was the isolation of the predominant representatives of sulfate-reducing bacteria (SRB) of the sulfidogenic microbial community separated from the soil ferrosphere and the examination of their morphological, physiological, biochemical and genotypic peculiarities, the evaluation of some physiological processes under co-culturing with their satellite species Anaerotignum propionicum. During the study two isolates of sulfatereducing bacteria NUChC SRB1 and NUChC SRB2 were obtained from sulfidogenic microbial community isolated from soil ferrosphere on Postgate’s “B” medium and their belonging to different strains (using ISSR-PCR method) was proved. As a result of molecular-genetic analysis of the strains, a 16S rRNA gene fragments of 613 bp and 522 bp were amplified and sequenced. The strains were identified as Desulfovibrio oryzae by the complex of microbiological, physiological and biochemical features and on the basis of 16S rRNA gene sequences (phylogenetic analysis). The 16S rRNA gene sequences were submitted in GenBank as MT102713 (NUChC SRB1) and MT102714 (NUChC SRB2). The co-cultivation of isolated SRB strains with A. propionicum NUChC Sat1 strain (in the absence of electron donors, the presence of sulfates and yeast extract) showed the formation of sulfur-reducing bacteria of hydrogen sulfide, which was not observed during their mono-cultivation. In this case, the phenomenon of syntrophy probably takes place- co-growth on the nutrient substrate, and the electron donor appears due to the use of the yeast extract compounds by the NUChC Sat1 strain. Therefore, in the sulfidogenic community isolated from the soil ferrosphere, there is a mutual growth of the association of bacteria D. oryzae and A. propionicum, which is caused by trophic interaction. Possibly the contribution of these associated bacteria to the corrosion process lies in the utilization of hydrogen (D. oryzae) and the formation of substrate products of SRB metabolism (hydrogen and organic acids), which are both corrosive compounds (A. propionicum). Without a doubt the corrosion process involving this association needs further investigation.

Keywords


ferrosphere; sulfate-reducing bacteria; Desulfovibrio oryzae; 16S rRNA gene; ISSR-PCR

Full Text:

PDF

References


AlAbbas F.M., Williamson Ch., Bhola Sh.M., Spear J.R., Olson D.L., Mishra B. & Kakpovbia A.E., 2013, Microbial Corrosion in Linepipe Steel Under the Influence of a Sulfate-Reducing Consortium Isolated from an Oil Field. J. Mater. Eng. Perform. 22(11): 3517–3529.

Andreyuk K., Kozlova I., Koptieva Zh., Pilyashenko-Novokhatny A., Zanina V. & Purish L. 2005, Microbial Corrosion of Underground Structures, Nauk. Dumka, Kyiv, 258 pp.

Asaulenko L.G., Abdulina D.R. & Purish L.M., 2010, Taxonomic position of individual representatives of sulfidogenic corrosion-aggressive microbial community. Mikrobiol. Z. 72(4): 3–10.

Beech I.B. & Gaylarde Ch.C., 1999, Recent advances in the study of biocorrosion: an overview. Rev. Microbiol. 30(3): 117–190.

Bergey’s Manual of Systematic Bacteriology [Don J. Brenner, Noel R. Krieg, James T. Staley et al.], 2005, Second Edition, 2, The Proteobacteria, Part C. The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, 1388 pp.

Bergey’s Manual of Systematic Bacteriology [Paul De Vos, George M. Garrity, Dorothy Jones et al.], 2009, Second edition. The Firmicutes, Springer, New York, 1422 pp.

Chang Y.J., Chang Y.T., Hung C.H., Lee J.W., Liao H.M. & Chuo H.L., 2014, Microbial сommunity analysis of anaerobic bio-corrosion in different ORP profiles. Int. Biodeterior. Biodegrad. 95: 93–101.

Conlette O.C., 2016, Microbial communities of light crude from Nigeria and potential for in situ biodegradation, souring, and corrosion. Petrol. Sci. Technol. 34: 71–77.

Dahle H. & Birkeland N.-K., 2006, Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well Int. J. Syst. Evol. Microbiol. 56: 1539–1545.

Deutzmann J.S., Sahin M. & Spormann A.M., 2015, Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6.

Dikiy I.L., Holupyak I.Y. & Sidorchuk I.I., 2002, Microbiology. Laboratory Manual, National University of Pharmacy Publishing House "Golden Pages", Kharkov, 444 pp.

Duncan K.E., 2010, Biocorrosive thermophilic microbial communities in alaskan north slope oil facilities. Environ. Sci. Technol. 43: 7977–7984.

Duque Z., Ibars J.R., Sarro´ M.I. & Moreno D.A., 2011, Comparison of sulphide corrosivity of sulphate- and non-sulphate-reducing prokaryotes isolated from oilfield injection water. Materials and Corrosion 62(9999): 1–7.

Gu T., 2014, Theoretical Modeling of the Possibility of Acid Producing Bacteria Causing Fast Pitting Biocorrosion. J. Microb. Biochem. Technol. 6(2): 068–074.

Herro H.M. & Port R.D., 1993, The Nalco guide to cooling water system failure analysis. McGraw-Hill, New York.

Kan J., Chellamuthu P., Obraztsova A., Moore J.E. & Nealson K.H., 2011, Diverse bacterial groups are associated with corrosive lesions at a Granite Mountain Record Vault (GMRV). Journal of Applied Microbiology 111: 329–337.

Kuever J., 2014, The family Desulfovibrionaceae, [in:] E. Rosenberg, E.F. DeLong, S. Loy, E. Stackebrandt, F. Thompson (eds), The Prokaryotes. Deltaproteobacteria and Epsilonproteobacteria, Fourth Edition. Springer-Verlag Berlin Heidelberg, p. 107–142.

Lee J.S., McBeth J.M., Ray R.I., Little B.J. & Emerson D., 2013, Iron cycling at corroding carbon steel surfaces. Biofouling 29: 1243–1252.

Li Y., Xu D., Chen C., Li X., Jia R., Zhang D., Sand W., Wang F. & Gu T., 2018, Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. J. Mater. Sci. Technol. 34: 1713–1718.

López-Cortés A., Fardeau M.L., Fauque G., Joulian C. & Ollivier B., 2006, Reclassification of the sulphate- and nitrate-reducing bacterium Desulfovibrio vulgaris subsp. oxamicus as Desulfovibrio oxamicus sp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 56: 1495–1499.

Machuca L.L., Lepkova K. & Petroski A., 2017, Corrosion of carbon steel in the presence of oilfield deposit and thiosulphate-reducing bacteria in CO2 environment. Corrosion Sci. 129: 16–25.

Madigan M.T., Martinko J.M., Bender K.S., Buckley D.H. & Stahl D.A., 2014, Brock Biology of Microorganisms, fourteenth ed. Pearson Education Ltd., Boston.

Marchal R., 1999, Rôle des bacteriés sulfurogènes dans la corrosion du fer. Oil & Gas Science and Technology: Rev. IFP 54(5) : 649–659.

Methods of General Bacteriology: in three volumes, Vol.3, 1984, F. Gerhardt et al. (ed.). Mir, Moscow, 264 pp.

Netrusov A.I., Bonch-Osmolovskaya E.A., Gorlenko V.M., Ivanov M.V., Karavayko G.I., Kozhevin P.A., Kolotilova N.N., Kotova I.B., Maksimov V.N., Nozhevnikova A.N., Semenov A.M., Turova T.P. & Yudina T.G., 2004, Ecology of microorganisms, A.I. Netrusov (ed.). Academia Publishing Center, Moscow, 272 pp.

Ozuolmez D., Na H., Lever M.A., Kjeldsen K.U., Jorgensen B.B. & Plugge C.M., 2015, Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence? Front. Microbiol. 6: 492.

Peck Jr. H.D. & Lissolo T., 1988, Assimilatory and dissimilatory sulphate reduction: enzymology and bioenergetics, [in:] J.A. Cole, S.J. Ferguson (eds), The Nitrogen and Sulphur Cycles, 42. Cambridge University Press, Canbridge, p. 99–132.

Peretyatko T.B. & Gudz S.P., 2011, The ability of sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 and Desulfobacter sp. use nitrate as an electron acceptor. Biol. Stud. 5(2): 51–60.

Pimenova M.N., Grechushkina N.N., Azova L.G., Semenova E.V. & Mylnikova S.I., 1983, Guide to Microbiology Practical Practices: Pract. Manual; N.S. Egorov (ed.). Publishing House of the Moscow University, Moscow, 215 pp.

Purish L.M. & Asaulenko L.G., 2007, Dynamics of succession changes in sulfidogenic microbial association under conditions of biofilm formation on the surface of steel. Mikrobiol. Z. 69(6): 19 25.

Purish L.M., Asaulenko L.G., Abdulina D.R. & Iutinskaya G.A., 2014, Biodiversity of sulfate-reducing bacteria developing on heat facilities. Mikrobiol. Z. 76(3): 11–17.

Redburn A.C. & Patel B.K.C., 1994, Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiology Letters 115: 33–38.

Romanenko V.I. & Kuznetsov S.I., 1974, Ecology of microorganisms of fresh water bodies. Nauka, Leningrad, 193 pp.

Rozanova E.P. & Nazina T.N., 1989a, Sulfate-reducing bacteria (systematics and metabolism). Microbiology 51: 191–226.

Rozanova E.P. & Nazina T.N., 1989b, Modern concepts of sulfate-reducing bacteria, [in:] Chemosynthesis: On the 100th anniversary of the discovery by S.N. Vinogradsky, Moscow, p. 199–228.

Salgar-Chaparro S.J. & Silva-Plata B.A., 2008, Caracterizacion de la comunidad microbiana residente en aguas de produccion de tres campos de explotacion petrolera, con especial enfasis en grupos asociados a procesos corrosivos. Proyecto. Universidad Industrial de Santander: 30.

Smirnov G.V., 2010, Repeats in bacterial genome: evolutionary considerations. Microbiology and Virology 25(2): 56–65.

Stackebrandt E. & Ebers J., 2006, Taxonomic parameters revisited: tarnished gold standards. Microbiology today 33(4): 152–155.

Suarez E.M., Lepkova K., Kinsella B. & Machuca L.L., 2019, Aggressive corrosion of steel by a thermophilic microbial consortium in the presence and absence of sand. International Biodeterioration & Biodegradation 137: 137–146.

Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S., 2013, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30: 2725–2729.

Tkachuk N.V., Zelena L.B., Parminska V.S., Yanchenko V.O. & Demchenko A.M., 2017, Identification of heterotrophic soil ferrosphere bacteria and their susceptibility to pesticide linuron. Mikrobiol. Z. 79(4): 75–87.

Tkachuk N., Zelena L. & Garkavenko K., 2018, Selection and identification of anaerobic satellite of sulfate-renewing bacteria [in:] "Shevchenkivsky spring: achievements of biological science / BioScience Advances": Proceedings of the XVI International Scientific Conference of Students and Young Scientists Kyiv, April 24-27, 2018). A.V. Palivoda, Kyiv, p. 106–107.

Trinkerl M., Breunig A., Schauder R. & Konig H., 1990, Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite. System. Appl. Microbiol. 13: 372–377.

Yeast Extract. URL: http://hefeextrakt.info/public/documents/yeast-products/yeast_extract.pdf.

Zelena L.B., Kovalenko N.K. & Poltavska O.A., 2011, Intraspecies variability of bifidobacteria colonizing human gastro-intestinal tract. Mikrobiol. Z. 73(3): 9–13.

Zuo R., 2007, Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl. Microbiol. Biotechnol. 76: 1245–1253.




Partnerzy platformy czasopism