Spatial analysis of Fire Characterization along with various gradients of Season, Administrative units, Vegetation, Socio economy, Topography and Future climate change: A case study of Orissa state of India

Firoz Ahmad, Md Meraj Uddin, Laxmi Goparaju

DOI: http://dx.doi.org/10.12775/EQ.2018.027

Abstract


Fire events are an increasing phenomenon these days due to the climate change. It is responsible for forest degradation and habitat destruction. Changes in ecosystem processes are also noticed. The livelihood of tribal population is also threatened. Geospatial technologies along with Remotely Sensed data have enormous capability to evaluate the various diversified datasets and to examine their relationship.

 In this analysis, we have utilized the long term fire events at district level for the Orissa state ofIndiaand forest fire hotspots were identified. The fire pattern was analyzed with respect to the existing vegetation types, tribal population and topography to understand its association/relationship. Furthermore, it was evaluated with future climate change data for better comprehension of future forest fire scenario.

 The study reveals that Kandhamal, Raygada and Kalahandi district have highest fire frequency representing around 38% of the total Orissa fire events. The vegetation type “Tropical mixed deciduous and dry deciduous forests” and “Tropical lowland forests, broadleaved, evergreen, <1000m” occupy the geographical area roughly 43% whereas they retain fire percent equivalent to 70%. Approximately 70% of forest fire occurred in the area where tribal population was high to very high. The 60% of forest fire occurred where elevation was greater than500 meterswhereas 48% of fire occurred on moderate slopes.

            Our observation of future climate change scenario for the year 2030 reflects the increase in summer temperature and irregular rainfall pattern. Therefore, forest fire intensity will be more in future in the state of Orissa whereas it’s intensity will be more severe in few of the district such as Kandhamal, Raygada, Kalahandi and Koraput which have significantly high forest fire events in present scenario.

The outcomes of the present study would certainly guide the policymakers to prepare more effective plan to protect the forest which is main source of livelihood to the tribal population keeping in mind of future climate change impact for prioritization of various districts of state of Orissa suffering from forest fires.


Keywords


forest fire events; forest fire hotspot; socio-economy; topography; climate change scenario (RCP-6); Orissa

Full Text:

PDF

References


Ager A.A., Evers C.R., Day M.A., Preisler H.K., Barros A.M.G. & Nielsen-Pincus M., 2017, Network analysis of wildfire transmission and implications for risk governance. PLoS ONE12(3): e0172867-e0172894. (https://doi.org/10.1371/journal.pone.0172867).

Aggarwal A., Paul., V. & Das S., 2009, Forest Resources: Degradation, Livelihoods, and Climate Change, [in:] D. Datt, S. Nischal (eds), Looking Back to Change Track. TERI 219, New Delhi: 91-108.

Ahmad F. & Goparaju L., 2017a, Geospatial Assessment of Forest Fires in Jharkhand (India). Indian Journal of Science and Technology 10(21): 1-7. (doi: 10.17485/ijst/2017/v10i21/113215).

Ahmad F. & Goparaju L., 2017b, Assessment of Threats to Forest Ecosystems Using Geospatial Technology in Jharkhand State of India. Current World Environment 12(2): 355-365. (http://dx.doi.org/10.12944/CWE.12.2.19).

Ahmad F., Goparaju L., Qayum A. & Quli S.M.S., 2017, Forest fire trend analysis and effect of environmental parameters: A study in Jharkhand State of India using Geospatial Technology. World Scientific News 90: 31-50.

Andreae M.O. & Merlet P., 2001, Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15(4): 955-966. (https://doi.org/10.1029/2000GB001382).

Arjunan M., Puyravaud J.-Ph. & Davidar P., 2005, The impact of resource collection by local communities on the dry forests of the Kalakad–Mundanthurai Tiger Reserve. Tropical Ecology 46: 135-144.

Bond W.J. & Keeley J.E., 2005, Fire as a global “herbivore”: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20(7): 387-394.

Bowman D.M., Balch J.K., Artaxo P., Bond W.J., Carlson J.M., Cochrane M.A., D’Antonio C.M., DeFries R.S., Doyle J.C., Harrison S.P., Johnston F.H., Keeley J.E., Krawchuk M.A., Kull C.A., Marston J.B., Moritz M.A., Prentice I.C., Roos C.I., Scott A.C., Swetnam T.W., van der Werf G.R. & Pyne S.J., 2009, Fire in the earth system. Science 324(5926): 481-484.

Chuvieco E. & Congalton R.G., 1989, Application of remote-sensing and geographic information-systems to forest fire hazard mapping. Remote Sensing of Environment 29(2): 147-159.

Csiszar I., Denis L., Giglio L., Justice C.O., & Hewson J., 2005, Global fire activity from two years of MODIS data. International Journal of Wildland Fire 14(2): 117-130.

Davidar P., Sahoo S., Mammen P.C., Acharya P., Puyravaud J.P., Arjunan M., Garrigues J.P. & Roessingh K., 2010, Assessing the Extent and Causes of Forest Degradation in India: Where do we Stand? Biological Conservation 43(12): 2937-2944.

Dwyer E., Gregoire J.M. & Malingreau J.P., 1998, A global analysis of vegetation fires using satellite images: Spatial and temporal dynamics. Ambio 27(3): 175-181.

Dwyer E., Pinnock S., Gregoire J.M. & Pereira J.M.C., 2000, Global spatial and temporal distribution of vegetation fire as determined from satellite observations. International Journal of Remote Sensing 21(6-7): 1289-1302.

Eva H. & Lambin E.F., 1998, Burnt area mapping in Central Africa using ATSR data. International Journal of Remote Sensing 19(18): 3473-3497.

Eva H. & Lambin E.F., 2000, Fires and land-cover change in the tropics: a remote sensing analysis at the landscape scale. Journal of Biogeography 27(3): 765-776.

FAO, 2001, Global forest fire assessment 1990–2000. FAO (Forest Resources Assessment), Rome.

Finney M.A., 2001, Design of Regular Landscape Fuel Treatment Patterns for Modifying Fire Growth and Behavior. Forest Science 47(2): 219-229.

Flannigan M.D. & Vonder Haar T.H., 1986, Forest-fire monitoring using NOAA satellite AVHRR. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 16(5): 975-982.

Flannigan M.D., Logan K.A. Amiro B.D. Skinner W.R. & Stocks B.J., 2005, Future area burned in Canada. Clim Chang 72(1-2): 1-16.

FSI, 2015, http://fsi.nic.in/isfr-2015/isfr-2015-forest-cover.pdf [Accessed on 15th November 2017].

Gedalof Z., 2011, Climate and spatial patterns of wildfire in North America, [in:] D. McKenzie, C. Miller, D.A. Falk (eds), The landscape ecology of fire. Springer, Dordrecht: 89–116. (https://doi.org/10.1007/978-94-007-0301-8_4).

Ghosh S. & Majumdar P.P., 2007, Nonparametric methods for modeling GCM and scenario uncertainty in drought assessment. Water Resour. Res. 43(W07405): 1-19. (doi:10.1029/2006WR005351).

Ghosh S. & Majumdar P.P., 2006, Future rainfall scenario over Orissa with GCM projections by statistical downscaling. Curr Sci. 19(6): 396–404.

Gill A.M., 1975, Fire and the Australian flora: A review. Aust. For. 38(1): 4-25.

Giriraj A., Babar S., Jentsch A., Sudhakar S. & Murthy M.S.R., 2010, Tracking fires in India using Advanced Along Track Scanning Radiometer (A)ATSR data. Remote Sens. 2(2): 591–610.

Hicke J., Johnson M.C. Hayes J. & Preisler H.K., 2012, Effects of bark beetle-caused tree mortality on wildfire. Forest Ecology and Management 271(2012): 81–90. (doi:10.1016/j.foreco.2012.02.005).

Kaufman Y.J., Setzer A., Ward D., Tanre D., Holben B.N., Menzel P., Pereira M.C. & Rasmussen R., 1992, Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE–A). Journal of Geophysical Research 97(D13): 14581-14599. (https://doi.org/10.1029/92JD00275).

Kloster S., Mahowald N., Randerson J. & Lawrence P., 2012, The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences 9(1): 509-525. (https://doi.org/10.5194/bg-9-509-2012).

Korontzi S., McCarty J., Loboda T., Kumar S. & Justice C., 2006, Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Global Biogeochemical Cycles 20(GB2021): 1-15. (doi:10.1029/2005GB002529).

Krawchuk M.A. & Moritz M.A., 2011, Constraints on global fire activity vary across a resource gradient. Ecology 92(1): 121–132.

Kushla J.D. & Ripple W.J., 1997, The role of terrain in a fire mosaic of a temperate coniferous forest. Forest Ecology and Management 95(2): 97–107.

Lynn K., Daigle J., Hoffman J., Lake F., Michelle N., Ranco D., Viles C., Voggesser G. & Williams P., 2013, The impacts of climate change on tribal traditional foods. Climatic Change 120(3): 545-556. (doi:10.1007/s10584-013-0736-1).

Mahapatra M. & Mohanty U.C., 2006, Spatio-temporal variability of summer monsoon rainfall over Orissa in relation to low-pressure systems. J. Earth Syst. Sci. 115(2): 203–218.

Mahendra Dev, S. & Ravi C., 2007, Poverty and Inequality: all-India and States, 1983-2005. Economic and Political Weekly 42(6): 509-521.

Maikhuri R.K., Nautiyal S., Rao K.S. & Saxena K.G., 2001, Conservation policy - people conflicts: a case study from Nanda Devi Biosphere Reserve (a World Heritage Site), India. Forest Policy and Economics 2(3-4): 355–365.

Maithani G.P., Bahuguna V.K. & Lal P., 1986, Effect of forest fires on the ground vegetation of a moist deciduous sal (Shorea robusta) forest. Indian Forester 112(8): 646–678.

Mishra P.C., Tripathy P.K., Behera N. & Mishra K., 2008, Socioeconomic and Socio-ecological study of Sambalpur Forest Division, Orissa. Journal of Human Ecology 23(2): 135-146.

Moritz M.A., Parisien M.-A, Batllori E., Krawchuk M.A., Van Dorn J. Ganz D.J. & Hayhoe K., 2012, Climate change and disruptions to global fire activity. Ecosphere 3(6): 1-22. (http://dx.doi.org/10.1890/ES11-00345.1).

National Wildlife Federation (NWF), 2011, Facing the Storm: Indian Tribes, Climate-Induced Weather Extremes, and the Future for Indian Country. National Wildlife Federation Rocky Mountain Research Center, Boulder, Colorado.

NCAR GIS Program. (2012) Climate Change Scenarios, version 2.0. Community Climate System Model, June 2004 version 3.0. http://www.cesm.ucar.edu/models/ccsm3.0/ was used to derive data products. NCAR/UCAR. URL. (http://www.gisclimatechange.org). [Accessed on 5th March 2018].

Patra J., Mishra A., Singh R. & Raghuwanshi N.S., 2012, Detecting rainfall trends in the twentieth century (1871–2006) over Odisha State, India. Clim. Change 111(3-4): 801–817. (doi:10.1007/s10584-011-0215-5).

Pausas J.G. & Fernandez-Munoz S., 2012, Fire regime changes in the western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Chang. 110(1-2): 215–226.

Ray-Bennett N.S., 2009, Multiple Disasters and Policy Responses in Pre- and Post-independence Orissa, India. Disasters 33(2): 274-290. (doi: 10.1111/j.1467-7717.2008.01074.x).

Reddy C.S., Alekhya V.V.L.P., Saranya K.R.L., Athira K., Jha C. S., Diwakar P. G. & Dadhwal V.K. 2017, Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions. J. Earth Syst. Sci. 126 (11):1-15. (doi: 10.1007/s12040-016-0791-x).

Reddy C.S., Khuroo A.A., Harikrishna P., Saranya K.R.L., Jha C.S. & Dadhwal V.K., 2014, Threat evaluation for biodiversity conservation of forest ecosystems using geospatial techniques: a case study of Odisha, India. Ecological Engineering 69: 287-303. (https://doi.org/10.1016/j.ecoleng.2014.05.006).

Reddy C.S., Jha C.S. & Dadhwal V.K., 2013, Assessment and monitoring of long-termforest cover changes in Odisha, India using remote sensing and GIS. Environ. Monitor. Asses. 185(5): 4399-4415.

Rothermel R.C., 1991, Predicting behavior and size of crown fires in the northern Rocky Mountains, Res. Pap. INT-438. U.S. Dept. of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT. (https://doi.org/10.2737/INT-RP-438).

Roy D.P., Borak J.S., Devadiga S., Wolfe R.E., Zheng M. & Descloitres J., 2002, The MODIS Land Product Quality Assessment Approach. Remote Sensing of Environment 83(1-2): 62-76.

Roy P.S., Agrawal S., Joshi P. & Shukla Y., 2003, The Land Cover Map for Southern Asia for the Year 2000. GLC2000 database, European Commision Joint Research Centre. (http://forobs.jrc.ec.europa.eu/products/glc2000/products.php).

Sagar R. & Singh. J.S., 2004, Local plant species depletion in a tropical deciduous forest of northern India. Environmental Conservation 31(1): 55-62.

Silori C.S. & Mishra B.K., 2001, Assessment of Livestock Grazing Pressure in and around the Elephant Corridors in Mudumalai Wildlife Sanctuary, South India. Biodiversity and Conservation 10(12): 2181-2195.

Sinha B. & Singh K.D., 2017, Achieving Conservation and Livelihood : A Case Study from Orissa, India. (https://dlc.dlib.indiana.edu/dlc/bitstream/handle/10535/7208/692.pdf?sequence=1) [Accessed on 25th December 2017].

Stocks B.J., Mason J.A., Todd J.B., Bosch E.M., Wotton B.M., Amiro B.D., Flannigan M.D., Hirsch K.G., Logan K.A., Martell D.L. & Skinner W.R., 2002, Large forest fires in Canada, 1959-1997. Journal of Geophysical Research - Atmospheres 107(D1): 5.1-5.12. (doi:10.1029/2001JD000484).

Sturrock R.N., Frankel S.J., Brown A.V., Hennon P.E., Kliejunas J.T., Lewis K.J., Worrall J.J. & Woods A.J., 2011, Climate change and forest diseases. Plant Pathol. 60(1): 133-149. (doi:10.1111/j.1365-3059.2010.02406.x).

Tanner T.M., Nair S., Bhattacharjya S., Srivastava S.K., Sarthi P.P., Sehgal M. & Kull D., 2007, ORCHID: climate risk screening in DFID India. Research report. Institute of Development Studies, Brighton. (https://www.ids.ac.uk/files/dmfile/ORCHIDIndiaRR.pdf).

Thonicke K., Spessa A., Prentice I.C., Harrison S.P., Dong L. & Carmona-Moreno C., 2010, The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: Results from a process-based model. Biogeosciences 7(6): 1991-2011.

Vadrevu K.P., Badarinath K.V. & Anuradha E., 2008, Spatial patterns in vegetation fires in the Indian region. Environ Monit Assess. 147(1-3): 1-13. (doi: 10.1007/s10661-007-0092-6).

Vadrevu K.P. Csiszar I., Ellicott E., Giglio L., Badarinath K. V. S., Vermote E.& Justice C., 2013, Hotspot analysis of vegetation fires and intensity in the Indian region IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(1): 224-38. (doi: 10.1109/JSTARS.2012.2210699).

van der Werf G.R., Randerson J.T., Giglio L., Collatz G.J., Mu M., Kasibhatla P.S., Morton D.C., DeFries R.S., Jin Y., & van Leeuwen T.T., 2010, Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics 10 (23): 11707-11735. (https://doi.org/10.5194/acp-10-11707-2010).

Voggesser G., Lynn K., Daigle J., Lake F.K. & Ranco D., 2013, Cultural impacts to tribes from climate change influences on forests. Clim Chang. 120(3): 615-626. (doi:10.1007/s10584-013-0733-4).

Vorobyov Y., 2004, Climate change and disasters in Russia, [in:] Y. Izrael, G. Gruza, S. Semenov, I. Nazarov (eds), Proc. World Climate Change Conference, Moscow. Institute of Global Climate and Ecology, Moscow: 293-298.

Wells N., Goddard S. & Hayes M.J., 2004, A self-calibrating Palmer Drought Severity Index. J. Clim. 17(12): 2335-2351.

Westerling A.L.,Gershunov A., Brown T.J., Cayan D.R. & Dettinger M.D., 2003, Climate and wildfire in the western United States. Bull. Am. Meteorol. Soc. 84(5): 595-604.




Partnerzy platformy czasopism