The role of anion in the impact of tetraethylammonium salts on soil phosphatase activities

Arkadiusz Telesiński, Barbara Pawłowska, Jacek Pater, Robert Biczak, Martyna Śnioszek

DOI: http://dx.doi.org/10.12775/EQ.2017.038

Abstract


Quaternary ammonium salts (QAS) are increasingly commonly used in the chemical industry. The diverse usage of these compounds results in high possibility of their penetration to the environment. The aim of this study was to compare the effect of three salts with tetraethylammonium cation with different anions such as chloride [TEA][Cl], bromide [TEA][Br], and iodine [TEA][I] on the activity of phosphatases in loamy sand. Organic carbon and total nitrogen content in the soil were 8.71 and 0.97 g·kg-1, respectively. The salts were applied to soil at doses of 0, 0.05, 0.50, and 5.00 mmol·kg-1. The samples were adjusted to 60% maximum water holding capacity, and they were incubated at a temperature of 20°C. Activities of acid phosphomonoesterase, alkaline phopshomonoesterase, phosphotriesterase, and inorganic pyrophosphatase were assayed on day 1, 7, 14, 28, 56, and 112. The obtained results demonstrated that the presence of [TEA] in the soil at the low dose (0.05 mmol·kg-1) may stimulate the activity of soil phosphatases. Higher doses of the soil had mostly inhibitory effect on phosphatases activity. Among the determined enzymes, phosphomonoesterases were the most sensitive to salts containing [TEA] cation. A considerable contribution of the anion type on the formation of activity of the determined enzymes of phosphorus compound changes. The strongest effect characterized tetraethylammonium bromide [TEA][Br].


Keywords


quaternary ammonium salts; loamy sand; acid phosphomonoesterase; alkaline phosphomonoesterase; phosphotriesterase; inorganic pyrophosphatase

Full Text:

PDF

References


Banerjee A., Sanyal S. & Sen S., 2012, Soil phosphatase activity of agricultural land: A possible index of soil fertility. Agricultural Science Research Journals 2(7): 412–419.

Biczak R., Pawłowska B., Białczewski P. & Rychter P., 2014, The role of the anion in the toxicity of imidazolium ionic liquids. Journal of Hazardous Materials 274: 181–190.

Biczak R., Telesiński A. & Pawłowska B., 2016, Oxidative stress in spring barley and common radish exposed to quaternary ammonium salts with hexafluorophosphate anion. Plant Physiology and Biochemistry 107: 248–256.

Burns R.G., DeForest J.L., Marxsen J., Sinsabaugh R.L., Stromberger M.E., Wallenstein M.D., Weintraubg M.N. & Zoppini A., 2013, Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry 58: 216–234.

Dick W.A. & Tabatabai M.A., 1978, Inorganic pyrophosphatase activity of soils. Soil Biology and Biochemistry 10: 59–65.

Eivazi F. & Tabatabai M.A., 1977, Phosphatases in soils. Soil Biology and Biochemistry 9: 167–172.

Futa B., Patkowski K., Bielińska E.J., Gruszecki T.M., Pluta M., Kulik M. & Chmielewski S., 2016, Sheep and horse grazing in a large-scale protection area and its positive impact on chemical and biological soil properties. Polish Journal of Soil Science 49(2): 111–122.

Grabińska-Sota E., 2004, Ocena oddziaływania czwartorzędowych soli amoniowych na środowisko wodne [Evaluation of impact of quaternary ammonium chlorides on water environment]. Politechnika Śląska, Zeszyty Naukowe 1613, Gliwice.

Guo P., Zhu L., Wang J., Wang J. & Liu T., 2015, Effects of alkyl-imidazolium ionic liquid [Omim]Cl on the functional diversity of soil microbial communities. Environmental Science and Pollution Research 22: 9059–9066.

Kaczyńska G., Borowik A. & Wyszkowska J., 2015, Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water, Air and Soil Pollution 226(11): 372.

Klose S. & Ajwa H.A., 2004, Enzyme activities in agricultural soil fumigated with methyl btomide alternatives. Soil Biology and Biochemistry 36: 1625–1635.

Mester P., Wagner M. & Rossmanith P., 2015, Antimicrobial effects of short chained imidazolium based ionic liquids – Influence of anion chaotropicity. Ecotoxicology and Environmental Safety 111: 96–101.

Matzke M., Stolte S., Thiele K., Juffernholz T., Arning J., Ranke J., Welz-Biermann U. & Jastorff B., 2007, The influence of anion species on the toxicity of1alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicologicaltest battery. Green Chemistry 9: 1198–1207.

Nannipieri P., Giagnoni L., Landi L. & Renella G., 2011, Role of phosphatase enzymes in soil, [in:] E.K. Btinemann, A. Oberson, E. Frossard (eds), Phosphorus in action. Springer-Verlag, Berlin, Heidelberg: 215-243.

Olander L.P. & Vitousek P.M., 2000, Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49: 175–190.

Orwin K.H. & Wardle D.A., 2004, New indices for quantifying the resistance and resilience of soil biota to exogenous disturbance. Soil Biology and Biochemistry 36: 1907–1912.

Parelho C., Rodrigues A.S., Barreto M.C., Ferreira N.G.C. & Garcia P., 2016, Assessing microbial activities in metal contaminated agricultural volcanic soils – an integrative approach. Ecotoxicology and Environmental Safety 129: 242–249.

Park S. & Kim K., 2017, Tetramethylammonium tetrafluoroborate: The smallest quaternary ammonium tetrafluoroborate salt for use in electrochemical double layer capacitors. Journal of Power Sources 338: 129–135.

Pernak J., 2013, Aktywność biologiczna soli zawierających czwartorzędowy atom azotu [Biological activity of the salts containing a quaternary nitrogen atom]. Przemysł Chemiczny 92(9): 1653–1656.

Płatkowski M. & Telesiński A., 2016, Response of soil phosphatases to glyphosate and its formulations – Roundup (laboratory conditions). Plant, Soil and Environment 62(6): 286–292.

Salgado J., Parajó J.J., Teijeira T., Cruz O., Proupin J., Villanueva M., Rodriguez-Afión J.A., Verdes P.V. & Reyes O., 2017, New insight into the environmental impact of two imidazolium ionic liquids. Effects on seed germination and soil microbial activity. Chemosphere 185: 665–672.

Stromberger M.E., Klose S., Ajwa H., Trout T. & Fennimore S., 2005, Microbial populations and enzyme activities in soils fumigated with methyl bromide alternatives. Soil Science Society of America Journal 69: 1987–1999.

Sun X., Zhu L., Wang J., Wang J., Su J., Liu T., Zhang C., Gao C. & Shao Y., 2017, Toxic effects of ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate on soil enzyme activity and soil microbial community diversity. Ecotoxicology and Environmental Safety 135: 201–208.

Tabatabai M.A. & Bremner J.M., 1969, Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1: 301–307.

Telesiński A., Śnioszek M., Biczak R. & Pawłowska B., 2016a, Zagrożenia środowiskowe i toksykologiczne wynikające ze stosowania czwartorzędowych soli amoniowych [Environmental and toxicological risk of using quaternary ammonium salts]. Kosmos 65(4): 495–502.

Telesiński A., Biczak R., Pawłowska B., Stręk M. & Pawłowski M., 2016b, Porównanie ekotoksyczności 1-butylo-2,3-dimetyloimidazoliowych cieczy jonowych z anionem tetrafluoroboranowym i heksafluorofosforanowym w stosunku do wybranych enzymów glebowych [Comparison of ecotoxicity of 1-butyl-2,3-dimethylimidazolium ionic liquids with tetrafluoroborate and hexafluorophosphate anion for selected soil enzymes]. Zeszyty Problemowe Postępów Nauk Rolniczych 587: 23–30.

Telesiński A. & Sułkowska N., 2016, Dynamika zanikania 1-alkilo-3-metyloimidazoliowych cieczy jonowych w aspekcie ich oddziaływania na aktywność oksydazy o-difenolowej w glebie [Dissipation dynamic of 1-alkyl-3-methylimidazolium ionic liquids and their effect on o-diphenol oxidase activity in soil]. Chemistry. Environment. Biotechnology 19: 87–92.

Telesiński A., Śnioszek M., Biczak R. & Pawłowska B., 2017, Response of soil phosphatases to three different ionic liquids with hexafluorophosphate anion. Journal of Ecological Engineering 18(2): 86–91.

Wang H., Malhorta S.V. & Francis A.J., 2011, Toxicity of various anions associated with methoxyethyl methyl imidazolium-based ionic liquids on Clostridium sp. Chemosphere 82 (11): 1597–1603.

Wang R., Dorodnikov M., Yang S., Zhang Y. Filley T.R, Turco R.F., Zhang Y., Xu Z., Li H. & Jiang Y., 2015, Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland. Soil Biology and Biochemistry 81: 159–167.

Yu Y. & Nie Y., 2011, Toxicity and antimicrobial activities of ionic liquids with halogen anion. Journal of Environmental Protection 2(3): 298–303.

Zhang C., Zhu L., Wang J., Wang J., Zhou T., Xu Y. & Cheng C., 2017, The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio). Ecotoxicology and Environmental Safety 140: 235–240.




Partnerzy platformy czasopism