Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Singular reaction diffusion equations where a parameter influences the reaction term and the boundary conditions
  • Strona domowa
  • /
  • Singular reaction diffusion equations where a parameter influences the reaction term and the boundary conditions
  1. Strona domowa /
  2. Archiwum /
  3. Vol 57, No 1 (March 2021) /
  4. Articles

Singular reaction diffusion equations where a parameter influences the reaction term and the boundary conditions

Autor

  • Nalin Fonseka
  • Amila Muthunayake
  • Ratnasingham Shivaji
  • Byungjae Son

Słowa kluczowe

Boundary value problems, singular problems, positive solutions

Abstrakt

We analyse positive solutions to the steady state reaction diffusion equation: \begin{equation*} \label{1.11} \begin{cases} -u''=\lambda h(t) f(u) \quad \text{in } (0,1), \\ -du'(0)+\mu(\lambda) u(0)=0,\\ u'(1)+\mu(\lambda) u(1)=0, \end{cases} \end{equation*} where $\lambda> 0$ is a parameter, $d\geq 0$ is a constant, $f \in C^2([0,\infty),\mathbb{R}) $ is an increasing function which is sublinear at infinity $\Big (\lim\limits_{s \rightarrow \infty}{f(s)}/{s}=0\Big)$, $h \in C^1((0,1],(0,\infty))$ is a nonincreasing function with $h_1:=h(1)> 0$ and there exist constants $d_0> 0$, $\alpha \in [0,1)$ such that $h(t)\leq {d_0}/{t^\alpha}$ for all $t \in (0,1]$, and $\mu \in C([0,\infty),[0,\infty))$ is an increasing function such that $\mu(0)\geq 0$. We consider three cases of $f$, namely, $f(0)=0$, $f(0)> 0$ and $f(0)< 0$. We will discuss existence and multiplicity results via the method of sub-supersolutions. Further, we will establish uniqueness results for $\lambda\approx 0$ and $\lambda\gg 1$.

Bibliografia

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709.

D. Butler, E. Ko and R. Shivaji, Alternate steady states for classes of reaction diffusion models on exterior domains, Discrete Contin. Dyn. Syst. Ser. S 7 (2014), No. 6, 1181–1191.

A. Castro, J.B. Garner and R. Shivaji, Existence results for classes of sublinear semipositone problems, Results Math. 23 (1993), 214–220.

A. Castro, M. Hassanpour and R. Shivaji, Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearity, Comm. Partial Differential Equations 20 (1995), No. 11–12, 1927–1936.

A. Castro, L. Sankar and R. Shivaji, Uniqueness of nonnegative solutions for semipositone problems on exterior domains, J. Math. Anal. Appl. 394 (2012), No. 1, 432–437.

K.D. Chu, D.D. Hai and R. Shivaji, Uniqueness of positive radial solutions for infinite semipositone p-Laplacian problems in exterior domains, J. Math. Anal. Appl. 472 (2019), No. 1, 510–525.

J. Cronin, J. Goddard and R. Shivaji, Effects of patch-matrix composition and individual movement response on population persistence at the patch-level, Bull. Math. Biol. 81 (2019), No. 10, 3933–3975.

R. Dhanya, E. Ko and R. Shivaji, A three solution theorem for singular nonlinear elliptic boundary value problems, J. Math. Anal. Appl. 424 (2015), No. 1, 598–612.

R. Dhanya, R. Shivaji and B. Son, A three solution theorem for a singular differential equation with nonlinear boundary conditions, Topol. Methods Nonlinear Anal. 54 (2019), No. 2A, 445–457.

N. Fonseka, R. Shivaji, B. Son and K. Spetzer, Classes of reaction diffusion equations where a parameter influences the equation as well as the boundary condition, J. Math. Anal. Appl. 476 (2019), No. 2, 480–494.

J. Goddard II, Q. Morris, S. Robinson and R. Shivaji, An exact bifurcation diagram for a reaction diffusion equation arising in population dynamics, Bound. Value Probl. 1 (2018), Art. No. 170.

F. Inkmann, Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions, Indiana Univ. Math. J. 31 (1982), 213–221.

E.K. Lee, L. Sankar and R. Shivaji, Positive solutions for infinite semipositone problems on exterior domains, Differential Integral Equations 24 (2011), 861–875.

E.K. Lee, S. Sasi and R. Shivaji, S-shaped bifurcation curves in ecosystems, J. Math. Anal. Appl. 381 (2011), 732–741.

M.A. Rivas and S. Robinson, Eigencurves for linear elliptic equations, ESAIM Control Optim. Calc. Var. 25 (2019), Art. 45, 25 pp.

R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture Notes in Pure and Applied Mathematics (V. Lakshmikantham, ed.), vol. 109, 1987, pp. 561–566.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2021-02-08

Jak cytować

1.
FONSEKA, Nalin, MUTHUNAYAKE, Amila, SHIVAJI, Ratnasingham & SON, Byungjae. Singular reaction diffusion equations where a parameter influences the reaction term and the boundary conditions. Topological Methods in Nonlinear Analysis [online]. 8 luty 2021, T. 57, nr 1, s. 221–242. [udostępniono 3.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 57, No 1 (March 2021)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa