Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Decay rates for a viscoelastic wave equation with Balakrishnan-Taylor and frictional dampings
  • Strona domowa
  • /
  • Decay rates for a viscoelastic wave equation with Balakrishnan-Taylor and frictional dampings
  1. Strona domowa /
  2. Archiwum /
  3. Vol 54, No 1 (September 2019) /
  4. Articles

Decay rates for a viscoelastic wave equation with Balakrishnan-Taylor and frictional dampings

Autor

  • Baowei Feng https://orcid.org/0000-0003-4507-8170
  • Yong Han Kang

Słowa kluczowe

General decay, Balakrishnan-Taylor damping, weak frictional damping, convexity, memory

Abstrakt

In this paper we are concerned with a viscoelastic wave equation with Balakrishnan-Taylor damping and frictional damping. By using the multiplier method and some properties of convex functions, we establish general energy decay rates of the equation without imposing any growth assumption near the origin on the frictional term and strongly weakening the usual assumptions on the relaxation term. Our stability result generalizes the earlier related results.

Bibliografia

F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C.R. Acad. Sci. Paris Sér. I 347 (2009), 867–872.

V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer–Verlag, New York, 1989.

A.V. Balakrishnan and L.W. Taylor, Distributed parameter nonlinear damping models for flight structures, Proceedings “Daming 89”, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB 1989.

R.W. Bass and D. Zes, Spillover, nonlinearity and flexible structures, Proceedings of the 30th IEEE Conference on Decision and Control, Brighton 2 (1991), 1633–1637.

S. Berrimi and S.A. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonlinear Anal. 64 (2006), 2314–2331.

M.M. Cavalcanti, A.D.D. Cavalcanti, I. Lasiecka and X. Wang, Existence and sharp decay rate estimates for a von Karman system with long memory, Nonlinear Anal. 22 (2015), 289–306.

M.M. Cavalcanti, V.N. Domingos Cavalcanti, I. Lasiecka and F.A. Nascimento, Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects, Discrete Contin. Dyn. Syst. Ser. B 19 (2014), 1987–2012.

M.M. Cavalcanti and H.P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim. 42 (2003), 1310–1324.

H.R. Clark, Elastic membrane equation in bounded and unbounded domains, Electron J. Qual. Theory Differ. Equ. 11 (2002), 1–21.

T.G. Ha, Stabilization for the wave equation with variable coefficients and Balakrishnan–Taylor damping, Taiwan. J. Math. 21 (2017), 807–817.

T.G. Ha, Asymptotic stability of the viscoelastic equation with variable coefficients and the Balakrishnan–Taylor damping, Taiwan. J. Math. (to appear).

T.G. Ha, General decay rate estimates for viscoelastic wave equation with Balakrishnan–Taylor damping, Z. Angew. Math. Phys. 67 (2016), DOI: 10.1007/s00033-016-0625-3.

Y.H. Kang, Energy decay rates for the Kirchhoff type wave equation with Balakrishnan–Taylor and acoustic boundary, East Asian Math. J. 30 (2014), 249–258.

V. Komornik, Exact Controllability and Stabilization, the Multiplier Method, RAM: Research in Applied Mathematics vol. 36, Masson–John Willey, Pairs, 1994.

I. Lasiecka, S.A. Messaoudi and M.I. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys. 54 (2013), 031504.

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differential Integral Equations 8 (1993), 507–533.

I. Lasiecka and X. Wang, Intrinsic decay rate estimates for semilinear abstract second order equations with memory, New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Springer INdAM Series, vol. 10, Cham: Springer, 2014, 271–303.

W.J. Liu and E. Zuazua, Deacy rates for dissipative wave equations, Ricerche Mat. 48 (1999), 61–75.

P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var. 4 (1999), 419–444.

P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping, Rev. Mat. Complut. 12 (1999), 251–283.

S.A. Messaoudi, On the control of solutions of a viscoelastic equation, J. Franklin Inst. 334 (2007), 765–776.

S.A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl. 341 (2008), 1457–1467.

S.A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a onlinear source, Nonlinear Anal. 69 (2008), 2589–2598.

S.A. Messaoudi and M.I. Mustafa, On the control of solutions of viscoelastic equations with boundary feedback, Nonlinear Anal. 10 (2009), 3132–3140.

M.I. Mustafa, Uniform decay rates for viscoelastic dissipative systems, J. Dyn. Control Syst. 22 (2016), 101–116.

M.I. Mustafa, Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations, Nonlinear Anal. 13 (2012), 452–463.

M.I. Mustafa, On the control of the wave equation by memory-type boundary condition, Discrete Contin. Dyn. Syst. Ser. A 35 (2015), 1179–1192.

M.I. Mustafa, Optimal decay rates for the viscoelastic wave equation, Math. Methods Appl. Sci. 41 (2018), 192–204.

M.I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl. 457 (2018), 134–152.

M.I. Mustafa and G.A. Abusharkh, Plate equations with frictional and viscoelastic dampings, Appl. Anal. 96 (2017), 1170–1187.

M.I. Mustafa and S.A. Messaoudi, General stability result for viscoelastic wave equations, J. Math. Phys. 53 (2012), 053702.

M.I. Mustafa and S.A. Messaoudi, General energy decay rates for a weakly damped wave equation, Commun. Math. Anal. 9 (2010), 67–76.

S.H. Park, Arbitrary decay of energy for a viscoelastic problem with Balakrishnan–Taylor damping, Taiwan. J. Math. 20 (2016), 129–141.

J.Y. Park and S.H. Park, General decay for quasilinear viscoelastic equations with nonlinear weak damping, J. Math. Phys. 50 (2009), 083505.

N.-e. Tatar and A. Zaraı̈, Global existence and polynomial decay for a problem with Balakrishnan–Taylor damping, Arch. Math. (Brno) 46 (2010), 47–56.

N.-e. Tatar and A. Zaraı̈, Exponential stability and blow up for a problem with Balakrishnan–Taylor damping, Demonstr. Math. 44 (2011), 67–90.

N.-e. Tatar and A. Zaraı̈, On a Kirchhoff equation with Balakrishnan–Taylor damping and source term, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 18 (2011), 615–627.

T.J. Xiao and J. Liang, Coupled second order semilinear evolution equations indirectly damped via memory effects, J. Differential Equations 254 (2013), 2128–2157.

Y. You, Intertial manifolds and stabilization of nonlinear beam equations with Balakrishnan–Taylor damping, Abstr. Appl. Anal. 1 (1996), 83–102.

A. Zaraı̈ and N.-e. Tatar, Non-solvability of Balakrishnan–Taylor Equation with Memory Term in RN , (G. Anastassiou, O. Duman, eds) Advances in Applied Mathematics and Approximation Theory, Springer Proceedings in Mathematics and Statistics, vol. 41, Springer, New York, 2013.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2019-07-21

Jak cytować

1.
FENG, Baowei & KANG, Yong Han. Decay rates for a viscoelastic wave equation with Balakrishnan-Taylor and frictional dampings. Topological Methods in Nonlinear Analysis [online]. 21 lipiec 2019, T. 54, nr 1, s. 321–343. [udostępniono 8.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 54, No 1 (September 2019)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa