Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Positive ground states for a subcritical and critical coupled system involving Kirchhoff-Schrödinger equations
  • Strona domowa
  • /
  • Positive ground states for a subcritical and critical coupled system involving Kirchhoff-Schrödinger equations
  1. Strona domowa /
  2. Archiwum /
  3. Vol 53, No 1 (March 2019) /
  4. Articles

Positive ground states for a subcritical and critical coupled system involving Kirchhoff-Schrödinger equations

Autor

  • José Carlos de Albuquerque
  • João Marcos do Ó
  • Giovany M. Figueiredo

Słowa kluczowe

Nonlinear Kirchhoff-Schrödinger equations, coupled systems, lack of compactness, ground states

Abstrakt

In this paper we prove the existence of positive ground state solution for a class of linearly coupled systems involving Kirchhoff-Schrödinger equations. We study the subcritical and critical case. Our approach is variational and based on minimization technique over the Nehari manifold. We also obtain a nonexistence result using a Pohozaev identity type.

Bibliografia

C.O. Alves, F.J.S.A. Corrêa and T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85–93.

C.O. Alves and G.M. Figueiredo, Nonlinear perturbations of a periodic Kirchhoff equation in RN , Nonlinear Anal. 75 (2012), 2750–2759.

C. Chen, Y. Kuo and T.F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations 250 (2011), 1876–1908.

J.M. do Ó and J.C. de Albuquerque, Ground states for a linearly coupled system of Schrödinger equations on RN , Asymptot. Anal. (to appear)

D. Gilbarg, and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer–Verlag, Berlin, 1983.

X.M. He and W.M. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 (2009), 1407–1414.

D. Lü and J. Xiao, Existence and multiplicity results for a coupled system of Kirchhoff type equations, Electron. J. Qual. Theory Differ. Equ. 6 (2014), 10 pp.

D. Lü and J. Xiao, Ground state solutions for a coupled Kirchhoff-type system, Math. Methods Appl. Sci. 38 (2015), 4931–4948.

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

Y. Li, F. Li and J. Shi, Existence of positive solutions to Kirchhoff type problems with zero mass, J. Math. Anal. Appl. 410 (2014), 361–374.

P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223–283.

J.L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud. 30 (1978), 284–346.

B. Sirakov, Existence and multiplicity of solutions of semi-linear elliptic equations in RN , Calc. Var. Partial Differential Equations 11 (2000), 119–142.

H. Shi and H. Chen, Ground state solutions for asymptotically periodic coupled Kirchhofftype systems with critical growth, Math. Methods Appl. Sci. 39 (2016), 2193–2201.

X.H. Tang and S. Chen, Ground state solutions of Nehari–Pohozaev type for Kirchhofftype problems with general potentials, Calc. Var. Partial Differential Equations 56 (2017), 25 pp.

M. Willem, Minimax Theorems, Birkhäser, Boston, 1996.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2019-02-24

Jak cytować

1.
DE ALBUQUERQUE, José Carlos, DO Ó, João Marcos & FIGUEIREDO, Giovany M. Positive ground states for a subcritical and critical coupled system involving Kirchhoff-Schrödinger equations. Topological Methods in Nonlinear Analysis [online]. 24 luty 2019, T. 53, nr 1, s. 291–307. [udostępniono 7.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 53, No 1 (March 2019)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa