Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

New results of mixed monotone operator equations
  • Strona domowa
  • /
  • New results of mixed monotone operator equations
  1. Strona domowa /
  2. Archiwum /
  3. Vol 53, No 1 (March 2019) /
  4. Articles

New results of mixed monotone operator equations

Autor

  • Tian Wang
  • Zhaocai Hao

Słowa kluczowe

Fixed point, $e$-concave-convex operator, $e$-concave operator, mixed monotone

Abstrakt

In this article, we study the existence and uniqueness of fixed points for some mixed monotone operators and monotone operators with perturbation.
These mixed monotone operators and monotone operators are $e$-concave-convex operators and $e$-concave operators respectively.
Without using compactness or continuity, we obtain the existence and uniqueness of fixed points by monotone iterative techniques and properties of cones. Our main results extended and improved some existing results. Also, we applied the results to some differential equations.

Bibliografia

Y. Chen, The existence of a fixed point for the sum of two monotone operators, Positivity 12 (2008), 643–652.

D. Guo and V. Lakskmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987), no. 5, 623–632.

D. Guo, V. Lakskmikantham and X. Liu, Nonlinear integral equations in abstract spaces. Kluwer Acad. Publ. Dordrecht, 1996.

F. Li and Z. Liang, Fixed point of φ-concave(-φ-convex) operator and application, J. Systems Sci. Math. Sci. 14 (1994), no. 4, 355–360. (in Chinese)

J. Liu, F. Li and L. Lu, Fixed point and applications of mixed monotone operators with superlinear nonlinearity, Acta Math. Sci. Ser. A 23 (2003), no. 1, 19–24. (in Chinese)

L. Liu, X. Zhang, J. Jiang and Y. Wu, The unique solution of a class of sum mixed monotone operator equations and its application to fractional boundary value problems, J. Nonlinear Sci. Appl. 9 (2016), 2943–2958.

H. Wang and L. Zhan, The solution for a class of sum operator equation and its application to fractional differential equation boundary value problems, J. Math. Anal. Appl. 203 (2015), DOI: 10.1186/s13661-015-0467-5.

X. Wu, New fixed point theorems and applications of mixed monotone operator, J. Math. Anal. Appl. 341 (2008), 883–893.

Y. Wu and Z. Liang, Existence and uniqueness of fixed points for mixed monotone operators with applications, Nonlinear Anal. 67 (2007), 2752–2762.

C. Zhai and DR. Anderson, A sum operator equation and applications to nonlinear elastic beam equations and Lane–Emden–Fowler equations, J. Math. Anal. Appl. 375 (2015), 388–400.

C. Zhai and M. Hao, Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems, Nonlinear Anal. 75 (2012), 2542–2551.

C. Zhai, C. Yang and C. Guo, Positive solutions of operator equation on ordered Banach spaces and applications, Comput. Math. Appl. 56 (2008), 3150–3156.

C. Zhai and L. Zhang, New fixed point theorems for mixed monotone operators and local existence-uniqueness of positive solutions for nonlinear boundary value problems, J. Math. Anal. Appl. 382 (2011), 594–614.

X. Zhang, L. Liu and Y. Wu, Fixed point theorems for the sum of three classes of mixed monotone operators and applications, Fixed Point Theory Appl. 49 (2016), DOI: 10.1186/s13663-016-0533-4.

Z. Zhao, Uniqueness and existence of fixed points on some mixed monotone mappings in order linear spaces, J. Sysems Sci. Math. Scis. 19 (1999), no. 2, 217–224. (in Chinese)

Z. Zhao, Existence and uniqueness of fixed points for some mixed monotone operators, Nonlinear Anal. 73 (2010), 1481–1490.

Z. Zhao and X. Du, Fixed points of generalized e-concave (generalized e-convex) operators and their applications, J. Math. Anal. Appl. 334 (2007), 1426–1438.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2019-03-02

Jak cytować

1.
WANG, Tian & HAO, Zhaocai. New results of mixed monotone operator equations. Topological Methods in Nonlinear Analysis [online]. 2 marzec 2019, T. 53, nr 1, s. 271–289. [udostępniono 6.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 53, No 1 (March 2019)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa