Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A generic result on Weyl tensor
  • Home
  • /
  • A generic result on Weyl tensor
  1. Home /
  2. Archives /
  3. Vol 53, No 1 (March 2019) /
  4. Articles

A generic result on Weyl tensor

Authors

  • Anna Maria Micheletti
  • Angela Pistoia

Keywords

Weyl tensor, Yamabe problem, generic result

Abstract

Let $M$ be a connected compact $C^\infty$ manifold of dimension $n\ge4$ without boundary. Let $ \mathcal{M}^k$ be the set of all $C^k$ Riemannian metrics on $M$. Any $g\in\mathcal{M}^k$ determines the Weyl tensor $$ \mathcal W^g\colon M\to \mathbb R^{4n},\qquad \mathcal W^g(\xi):=(W^g_{ijkl}(\xi))_{i,j,k,l=1,\dots,n}.$$ We prove that the set $$\mathcal{A}:=\big\{g\in \mathcal{M}^k : |\mathcal W^g(\xi)|+|D \mathcal W^g(\xi)|+|D^2 \mathcal W^g(\xi)|> 0\ \hbox{for any}\ \xi\in M\big\}$$ is an open dense subset of $\mathcal{M}^k$.

References

T. Aubin, Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9) 55 (1976), 269–296.

S. Brendle, Blow-up phenomena for the Yamabe equation, J. Amer. Math. Soc. 21 (2008), no. 4, 951–979.

S. Brendle and F.C. Marques, Blow-up phenomena for the Yamabe equation. II, J. Differential Geom. 81 (2009), no. 2, 225–250.

M.A. Khuri, F.C. Marques and R.M. Schoen, A compactness theorem for the Yamabe problem, J. Differential Geom. 81 (2009), no. 1, 143–196.

J. Lohkamp The Higher Dimensional Positive Mass Theorem II, arXiv:1612.07505.

F.C. Marques, Compactness and non-compactness for Yamabe-type problems, Contributions to Nonlinear Elliptic Equations and Systems, Progr. Nonlinear Differential Equations Appl. vol. 86, Birkhäuser/Springer, 2015, pp. 121–131.

A.M. Micheletti and A. Pistoia, Generic properties of critical points of Weyl tensor, Adv. Nonlinear Stud. 17 (2017), no. 1, 99–109.

M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1972), 247–258.

D. Pollack, Nonuniqueness and high energy solutions for a conformally invariant scalar curvature equation, Comm. Anal. and Geom. 1 (1993), 347–414.

F. Quinn, Transversal approximation on Banach manifolds, Global Analysis, 1970 (Proc. Sympos. Pure Math., Vol. XV, Berkeley, California, 1968), Amer. Math. Soc., Providence, R.I., pp. 213–222.

J.C. Saut and R. Temam, Generic properties of nonlinear boundary value problems, Comm. Partial Differential Equations 4 (1979), no. 3, 293–319.

R.M. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geometry 20 (1984), 479–495.

R.M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in Calculus of Variations, Lecture Notes in Mathematics, Springer–Verlag, New York, vol. 1365, 1989.

R.M. Schoen, Notes from graduates lecture in Stanford University, 1988. http://www.math.washington.edu/pollack/research/Schoen-1988-notes.html.

R.M. Schoen, On the number of constant scalar curvature metrics in a conformal class, Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 311–320.

R.M. Schoen and S.-T. Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 76 (1979), 65–45.

N.S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 265–274.

K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), no. 4, 1059–1078.

H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21–37.

E. Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 402 (1981), 80–381.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-03-02

How to Cite

1.
MICHELETTI, Anna Maria and PISTOIA, Angela. A generic result on Weyl tensor. Topological Methods in Nonlinear Analysis. Online. 2 March 2019. Vol. 53, no. 1, pp. 257 - 269. [Accessed 6 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 53, No 1 (March 2019)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop