Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A continuation lemma and the existence of periodic solutions of perturbed planar Hamiltonian systems with sub-quadratic potentials
  • Strona domowa
  • /
  • A continuation lemma and the existence of periodic solutions of perturbed planar Hamiltonian systems with sub-quadratic potentials
  1. Strona domowa /
  2. Archiwum /
  3. Vol 52, No 2 (December 2018) /
  4. Articles

A continuation lemma and the existence of periodic solutions of perturbed planar Hamiltonian systems with sub-quadratic potentials

Autor

  • Zaihong Wang
  • Tiantian Ma

Słowa kluczowe

Continuation lemma, sub-quadratic potential, periodic solution

Abstrakt

n this paper, we study the existence of periodic solutions of perturbed planar Hamiltonian systems of the form $$ \begin{cases} x'=f(y)+p_1(t,x,y), \\ y'=-g(x)+p_2(t,x,y). \end{cases} $$% We prove a continuation lemma for a given planar system and further use it to prove that this system has at least one $T$-periodic solution provided that $g$ has some sub-quadratic potentials.

Bibliografia

A. Boscaggin, Subharmonic solutions of planar Hamiltonian systems: a rotation number approach, Adv. Nonlinear Stud. 11 (2011), 77–103.

A. Boscaggin and M. Garrione, Resonance and rotation numbers for planar Hamiltonian systems: Multiplicity results via the Poincaré–Birkhoff theorem, Nonlinear Anal. 74 (2011), 4166–4185.

T. Ding, R. Iannacci and F. Zanolin, On periodic solutions of sublinear Duffing equations, J. Math. Anal. Appl. 158 (1991), 316–332.

T. Ding, R. Iannacci and F. Zanolin, Existence and multiplicity results for periodic solutions of semilinear Duffing equations, J. Differential Equations 105 (1993), 364–409.

M.L. Fernandes and F. Zanolin, Periodic solutions of a second order differential equation with one-sided growth restrictions on the restoring term, Arch. Math. 51 (1988), 151–163.

A. Fonda and L. Ghirardelli, Multiple periodic solutions of Hamiltonian systems in the plane, Topol. Methods Nonlinear Anal. 36 (2010), 27–38.

A. Fonda and A. Sfecci, A general method for the existence of periodic solutions of differential systems in the plane, J. Differential Equations 252 (2012), 1369–1391.

M. Garrione, Resonance at the first eigenvalue for fist order systems in the plane: vanishing Hamiltonians and the Landesman–Lazer conditions, Differential Integral Equations 25 (2012), 505–526.

A.C. Lazer, On Schauder’s fixed point theorem and forced second order non-linear oscillations, J. Math. Anal. Appl. 21 (1968), 421–425.

T. Ma and Z. Wang, A continuation lemma and its applications to periodic solutions of Rayleigh differential equations with subquadratic potential conditions, J. Math. Anal. Appl. 385 (2012), 1107–1118.

J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces J. Differential Equations 12 (1972), 610–636.

J. Mawhin and J. Ward, Periodic solutions of second order forced Liénard differential equations at resonance, Arch. Math. 41 (1983), 337–351.

P. Omari and F. Zanolin, Nonresonance conditions on the potential for a second-order periodic boundary value problem, Proc. Amer. Math. Soc. 117 (1993), 125–135.

R. Reissig, Periodic solutions of a second order differential equation including a one-sided restoring term, Arch. Math. 33 (1979), 85–90.

K. Schmitt, Periodic solutions of a forced nonlinear oscillator involving a onesided restoring force, Arch. Math. 31 (1978), 70–73.

Z. Wang and T. Ma, Periodic solutions of planar Hamiltonian systems with asymmetric nonlinearities, Boundary Value Problems, 2017, No. 46.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2018-11-24

Jak cytować

1.
WANG, Zaihong & MA, Tiantian. A continuation lemma and the existence of periodic solutions of perturbed planar Hamiltonian systems with sub-quadratic potentials. Topological Methods in Nonlinear Analysis [online]. 24 listopad 2018, T. 52, nr 2, s. 693–706. [udostępniono 7.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 52, No 2 (December 2018)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa