Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A note on dimensional entropy for amenable group actions
  • Strona domowa
  • /
  • A note on dimensional entropy for amenable group actions
  1. Strona domowa /
  2. Archiwum /
  3. Vol 51, No 2 (June 2018) /
  4. Articles

A note on dimensional entropy for amenable group actions

Autor

  • Dou Dou
  • Ruifeng Zhang

Słowa kluczowe

Topological entropy, dimensional entropy, amenable group, Hausdorff dimension, subshift

Abstrakt

In this short note, for countably infinite amenable group actions, we provide topological proofs for the following results: Bowen topological entropy (dimensional entropy) of the whole space equals the usual topological entropy along tempered F{\o}lner sequences; the Hausdorff dimension of an amenable subshift (for certain metric associated to some F{\o}lner sequence) equals its topological entropy. This answers questions by Zheng and Chen \cite{ZC} and Simpson \cite{S}.

Bibliografia

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125–136.

M. Coornaert, Topological Dimension and Dynamical Systems, Springer, Cham, 2015.

D.J. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal. 263 (2012), no. 8, 2228–2254.

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Syst. Theory 1 (1967), 1–49.

D. Kerr and H. Li, Ergodic Theory: Independence and Dichotomies, Springer Monographs in Mathematics, Springer, Cham 2016.

E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2001), 259–295.

D.S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987), 1–141.

Y.B. Pesin, Dimension Theory in Dynamical Systems, Contemporary Views and Applications, University of Chicago Press, Chicago, IL, 1997.

S.G. Simpson, Symbolic dynamics: Entropy =Dimension =Complexity, Theory Comput. Syst. 56 (2015), 527–543.

D. Zheng and E. Chen, Bowen entropy for actions of amenable groups, Israel J. Math. 212 (2016), no. 2, 895–911.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2018-03-18

Jak cytować

1.
DOU, Dou & ZHANG, Ruifeng. A note on dimensional entropy for amenable group actions. Topological Methods in Nonlinear Analysis [online]. 18 marzec 2018, T. 51, nr 2, s. 599–608. [udostępniono 8.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 51, No 2 (June 2018)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa