Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Dynamics on sensitive and equicontinuous functions
  • Strona domowa
  • /
  • Dynamics on sensitive and equicontinuous functions
  1. Strona domowa /
  2. Archiwum /
  3. Vol 51, No 2 (June 2018) /
  4. Articles

Dynamics on sensitive and equicontinuous functions

Autor

  • Jie Li
  • Tao Yu
  • Tiaoying Zeng

Słowa kluczowe

Sensitivity, sensitive pairs, sensitive functions, equicontinuous functions, weak mixing

Abstrakt

The notions of sensitive and equicontinuous functions under semigroup action are introduced and intensively studied. We show that a transitive system is sensitive if and only if it has a sensitive pair if and only if it has a sensitive function. While there exists a minimal non-weakly mixing system such that every non-constant continuous function is sensitive, and a topological dynamical system is weakly mixing if and only if it is sensitive consistently with respect to (at least) any two non-constant continuous functions. We also get a dichotomy result for minimal systems -- every continuous function is either sensitive or equicontinuous.

Bibliografia

M. Achigar, A. Artigue and I. Monteverde, Observing expansive maps, arXiv:1611.08488v1, 2016.

E. Akin, J. Auslander and E. Glasner, The topological dynamics of Ellis actions, Mem. Amer. Math. Soc. 195 (2008), no. 913, vi+152 pp.

J. Auslander, Minimal Flows and Their Extensions, North-Holland Mathematics Studies, vol. 153, Amsterdam, North-Holland, 1988.

J. Auslander and J. Yorke, Interval maps, factors of maps and chaos, Tôhoku Math. J. (2) 32 (1980), no. 2, 177–188.

F. Garcı́a-Ramos and B. Marcus, Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems, arXiv:1509.05246v3, 2015.

E. Glasner and M. Megrelishvili, Linear representations of hereditarily non-sensitive dynamical systems, Colloq. Math. 104 (2006), no. 2, 223–283.

E. Glasner and B. Weiss, Quasi-factors of zero-entropy systems, J. Amer. Math. Soc. 8 (1995), 665–686.

D. Kerr and H. Li, Dynamical entropy in banach spaces, Invent. Math. 162 (2005), no. 3, 649–686.

D. Kerr and H. Li, Independence in topological and C ∗ -dynamics, Math. Ann. 338 (2007), 869–926.

E. Kontorovich and M. Megrelishvili, A note on sensitivity of semigroup actions, Semigroup Forum 76 (2008), no. 1, 133–141.

J. Li and X. Ye, Recent development of chaos theory in topological dynamics, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 1, 83–114.

K. Petersen, Disjointness and weak mixing of minimal sets, Proc. Amer. Math. Soc. 24 (1970), 278–280.

D. Ruelle, Dynamical systems with turbulent behavior, Mathematical Problems in Theoretical Physics, Proc. Internat. Conf., Univ. Rome, Rome, 1977, Lecture Notes in Phys., vol. 80, Springer, Berlin, New York, 1978, pp. 341–360.

S. Shao, X. Ye and R. Zhang, Sensitivity and regionally proximal relation in minimal systems, Sci. China Math. 51 (2008), 987–994.

H. Wang, Z. Chen and H. Fu, M-systems and scattering systems of semigroup actions, Semigroup Forum 91 (2015), no. 3, 699–717.

J. Xiong, Chaos in a topologically transitive system, Sci. China Ser. A 48 (2005), 929–939.

X. Ye and R. Zhang, On sensitive sets in topological dynamics, Nonlinearity 21 (2008), 1601–1620.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2018-01-08

Jak cytować

1.
LI, Jie, YU, Tao & ZENG, Tiaoying. Dynamics on sensitive and equicontinuous functions. Topological Methods in Nonlinear Analysis [online]. 8 styczeń 2018, T. 51, nr 2, s. 545–563. [udostępniono 5.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 51, No 2 (June 2018)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa