Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiple nodal solutions for semilinear Robin problems with indefinite linear part and concave terms
  • Strona domowa
  • /
  • Multiple nodal solutions for semilinear Robin problems with indefinite linear part and concave terms
  1. Strona domowa /
  2. Archiwum /
  3. Vol 50, No 1 (September 2017) /
  4. Articles

Multiple nodal solutions for semilinear Robin problems with indefinite linear part and concave terms

Autor

  • Nikolaos S. Papageorgiou
  • Calogero Vetro
  • Francesca Vetro

Słowa kluczowe

Indefinite potential, nodal solutions, extremal constant sign solutions, regularity theory, concave term

Abstrakt

We consider a semilinear Robin problem driven by Laplacian plus an indefinite and unbounded potential. The reaction function contains a concave term and a perturbation of arbitrary growth. Using a variant of the symmetric mountain pass theorem, we show the existence of smooth nodal solutions which converge to zero in $C^1(\overline{\Omega})$. If the coefficient of the concave term is sign changing, then again we produce a sequence of smooth solutions converging to zero in $C^1(\overline{\Omega})$, but we cannot claim that they are nodal.

Bibliografia

G. D’Aguı̀, S.A. Marano and N.S. Papageorgiou, Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction, J. Math. Anal. Appl. 433 (2016), 1821–1845.

L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis, Ser. Math. Anal. Appl. 9, Chapman and Hall/CRC Press, Boca Raton, 2006.

H.-P. Heinz, Free Lusternik–Schnirelmann theory and the bifurcation diagrams of certain singular nonlinear problems, J. Differential Equations 66 (1987), no. 2, 263–300.

S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory. Mathematics and its Applications, vol. 419, Kluwer, Dordrecht, 1997.

R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal. 225 (2005), no. 2, 352–370.

S.A. Marano and N.S. Papageorgiou, Multiple solutions to a Dirichlet problem with p-Laplacian and nonlinearity depending on a parameter, Adv. Nonlinear Anal. 1 (2012), 257–275.

N.S. Papageorgiou and F. Papalini, Seven solutions with sign information for sublinear equations with unbounded and indefinite potential and no symmetries, Israel J. Math. 201 (2014), 761–796.

N.S. Papageorgiou and V.D. Rǎdulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations 256 (2014), no. 7, 2449–2479.

N.S. Papageorgiou and V.D. Rǎdulescu, Robin problems with indefinite, unbounded potential and reaction of arbitrary growth, Rev. Mat. Comput. 29 (2016), no. 1, 91–126.

P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser, Basel, 2007.

A. Qian, Existence of infinitely many nodal solutions for a superlinear Neumann boundary value problem, Bound. Value Probl. 2005 (2005), Article ID 201383, 7 pp.

A. Qian and C. Li, Infinitely many solutions for a Robin boundary value problem, Int. J. Differential Equations 2010 (2010), Article ID 548702, 9 pp.

D. Qin, X. Tang and J. Zhang, Multiple solutions for semilinear elliptic equations with sign-changing potential and nonlinearity, Electron. J. Differential Equations 2013 (2013), No. 207, 9 pp.

X.-J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991), 283–310.

Z.-Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, NoDEA Nonlinear Differential Equations Appl. 8 (2001), 15–33.

C. Yu and I. Yongqing, Infinitely many solutions for a semilinear elliptic equation with sign-changing potential, Bound. Value Probl. 2009 (2009), Article ID 532546, 7 pp.

Q. Zhang and C. Liu, Multiple solutions for a class of semilinear elliptic equations with general potentials, Nonlinear Anal. 75 (2012), 5473–5481.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2017-08-19

Jak cytować

1.
PAPAGEORGIOU, Nikolaos S., VETRO, Calogero & VETRO, Francesca. Multiple nodal solutions for semilinear Robin problems with indefinite linear part and concave terms. Topological Methods in Nonlinear Analysis [online]. 19 sierpień 2017, T. 50, nr 1, s. 269–286. [udostępniono 5.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 50, No 1 (September 2017)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa