Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Fillipov-Ważewski Thorem for certain second order differential inclusions
  • Strona domowa
  • /
  • Fillipov-Ważewski Thorem for certain second order differential inclusions
  1. Strona domowa /
  2. Archiwum /
  3. Vol 47, No 1 (March 2016) /
  4. Articles

Fillipov-Ważewski Thorem for certain second order differential inclusions

Autor

  • Grzegorz Bartuzel
  • Andrzej Fryszkowski

Słowa kluczowe

Differential inclusion, differential operator, Lipschitz multifunction, Filippov Lemma, Filippov-Ważewski Theorem, Gronwall inequality

Abstrakt

In the paper we give a generalization of the Filippov-Ważewski Theorem to the second order differential inclusions \begin{equation} \mathcal{D}y=y^{\prime \prime }-A^{2}y\in F( t,y) , \tag{$*$} \end{equation} with the initial conditions \begin{equation} y( 0) =\alpha ,\quad y^{\prime }( 0) =\beta , \tag{$**$} \end{equation} where $A\in \mathbb{R}^{d\times d}$ and $F\colon [ 0,T] \times \mathbb{R}^{d}\leadsto c( \mathbb{R}^{d}) $ is a multifunction satisfying for each $t\in [ 0,T] $ the Lipschitz condition in $y$ \begin{equation*} d_{H}( F( t,y_{1}) ,F( t,y_{2}) ) \leq l( t) \vert y_{1}-y_{2}\vert , \end{equation*} where $l(\,\cdot\,) $ is integrable. The main result is the following: {\sc Theorem \ref{th2}}. {\it Assume that $F\colon[ 0,T] \times \mathbb{R}^{d}\leadsto c( \mathbb{R}^{d}) $ is measurable in $t$, Lipschitz continuous in $x\in \mathbb{R}^{d}$ \rom{(}with integrable constant\rom{)} and integrably bounded. Let $r\in W^{2,1}$ be a solution of the relaxed problem \begin{equation} \mathcal{D}y=y^{\prime \prime }-A^{2}y\in \rom{cl}\,\rom{co}\,F ( t,y) , \tag{$**$$*$} \end{equation} with $(**)$. Then, for each $\varepsilon \ge 0$, there exists a solution $y\in W^{2,1}$ of $(*)$ with $(**)$ such that \begin{equation*} \Vert y-r\Vert _{C^{1}[ 0,T] }\le \varepsilon . \end{equation*}} The proof goes via a version of the Fillipov Lemma (Theorem~\ref{th1}) for inclusions ($*$).

Bibliografia

J.P. Aubin and A. Cellina, Differential Inclusions, Springer Verlag, Berlin, 1984.

J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhaüser, Boston, Basel, Berlin, 1990 (1965).

G. Bartuzel and A. Fryszkowski, Filippov Lemma for certain second order differential inclusions, Cent. Eur. J. Math. 10 (2012), 1944–1952.

Ch. Cai, R. Goebel and A. Teel, Relaxation results for hybrid inclusions, Set-Valued Anal. 16 (2008), No. 5, 733–757.

A. Cellina, On the set of solutions to Lipschitzian differential inclusions, Differential Integral Equations 1 (1988), 495–500.

A. Cellina and A. Ornelas, Representations of the attainable set for Lipschitzean differential inclusions, Rocky Mountain J. Math. (1988).

A. Cernea, On the existence of solutions for a higher order differential inclusion without convexity, Electron. J. Qual. Theory Differ. Equ. 8 (2007), 1–8. http://www.math.uszeged.hu/ejqtde

A. Cernea, Continuous version of Filippov’s theorem for a second-order differential inclusion, An. Univ. Bucureşti Mat. 57 (2008), 3–12.

A. Cernea, Some Filippov type theorems for mild solutions of second-order differential inclusion, Rev. Roumaine Math. Pures Appl. 54 (2009), 1–11.

R.M. Colombo, A. Fryszkowski, T. Rzeżuchowski and V. Staicu, Continuous selection of solution sets of Lipschitzean differential inclusions, Funkc. Ekv. 34 (1991), 321–330.

A.F. Filippov, Classical solutions of differential equations with multivalued right hand side, Vestnik Moscov. Univ. Ser. 1 Mat. Mech. Astr. 22 (1967), 16–26; English transl.: SIAM J. Control. 5 (1967), 609–621.

A. Fryszkowski, Fixed Point Theory for Decomposable Sets, Kluwer Academic Publishers, Amsterdam 2004, series Topological Fixed Point Theory, vol. 2, 1–206.

A. Fryszkowski and T. Rzeżuchowski, Continuous version of Fillipov–Ważewski Relaxation Theorem, J. Differential Equations 94 (1992), 254–265.

A. Fryszkowski and T. Rzeżuchowski, Pointwise estimates for retractions on the solution set to Lipschitz differential inclusions, Proc. Proc. Amer. Math. Soc. 139 (2011), 597–608.

Sh. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, vol. I, Kluwer, 1997.

B.P. Ingalls, E.D. Sontag and Y. Wang, A Relaxation Theorem for Differential Inclusions with Applications to Stability Properties, (D. Gilliam and J. Rosenthal, eds.), Mathematical Theory of Networks and Systems, Electronic Proceedings of MTNS-2002 Symposium held at the University of Notre Dame, 2002.

V. Lupulescu, Continuous selection of solution sets to second order evolution equations, Acta Univ. Apulensis, Math. Inform. 7 (2004), 163–170.

O. Nasselli-Riccieri, Fixed points of multivalued contractions, J. Math. Anal. Appl. 135 (1988), 406–418.

O. Nasselli-Riccieri and B. Riccieri, Differential inclusions depending on parameter, Bull. Polish Acad. Sci. Math. 37 (1989), 665–671.

N.S. Papageorgiou, On the solution evolution set of differential inclusions in Banach spaces, Appl. Anal. 25 (1987), 319–329.

D. Repovš D. and P.V. Semenov, Continuous selections of multivalued mappings, Math. Appl. 455, Kluwer, Dordrecht, the Netherlands, 1998.

L. Rybiński, A fixed point approach in the study of solution sets of Lipschitzean functional-differential inclusions, JMAA 160 (1991), 24–46.

E.D. Sontag and Y. Wang, New characterizations of the input to state stability property, IEEE Trans. Automat. Control 41 (1996), 1283–1294.

A.A. Tolstogonov, On the structure of the solution set for differential inclusions in Banach spaces, Math. USSR Sbornik 46 (1983), 1–15 (in Russian); (1984), 229–242.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2016-03-01

Jak cytować

1.
BARTUZEL, Grzegorz & FRYSZKOWSKI, Andrzej. Fillipov-Ważewski Thorem for certain second order differential inclusions. Topological Methods in Nonlinear Analysis [online]. 1 marzec 2016, T. 47, nr 1, s. 389–403. [udostępniono 7.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 47, No 1 (March 2016)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa