Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Contractive function systems, their attractors and metrization
  • Home
  • /
  • Contractive function systems, their attractors and metrization
  1. Home /
  2. Archives /
  3. Vol 46, No 2 (December 2015) /
  4. Articles

Contractive function systems, their attractors and metrization

Authors

  • Taras Banakh
  • Wiesław Kubiś
  • Natalia Novosad
  • Magdalena Nowak
  • Filip Strobin

DOI:

https://doi.org/10.12775/TMNA.2015.076

Keywords

Fractal, attractor, iterated function system, contracting function system, fixed point

Abstract

In this paper we study the Hutchinson-Barnsley theory of fractals in the setting of multimetric spaces (which are sets endowed with point separating families of pseudometrics) and in the setting of topological spaces. We find natural connections between these two approaches.

References

R. Atkins, M. Barnsley, A. Vince and D.C. Wilson, A characterization of hyperbolic affine iterated function systems, Topology Proc. 36 (2010), 189–2011.

T. Banakh, M. Nowak, A 1-dimensional Peano continuum which is not an IFS attractor, Proc. Amer. Math. Soc. 141 (2013), 931–935.

M.F. Barnsley, Fractals everywhere. Academic Press Professional, Boston, MA, 1993.

M. Barnsleya and K. Igudesman, Topological contracting systems, Lobachevskii Journal of Mathematics, 32 (2011), 220–223.

M. Barnsley and A. Vince, The eigenvalue problem for linear and affine iterated function systems, Linear Algebra Appl. 435 (2011), 3124–3138.

J. Diestel, Sequences and Series in Banach Spaces. Springer–Verlag, New York, 1984.

D. Dymitru, Attractors of topological iterated function system, Annals of Spiru Haret University: Mathematics-Informatics series, 8 (2012), 11–16.

A. Edalat, Power domains and iterated function systems, Inform. and Comput. 124 (1996), no. 2, 182–197.

M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74–79.

R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.

M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), 381–414.

J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.

J. Jachymski, Remetrization theorems for finite families of mappings, and hyperbolic iterated function systems, preprint.

J. Jachymski and I. Józwik, Nonlinear contractive conditions: a comparison and related problems, Banach Center Publ. Polish Acad. Sci., 77 (2007), 123–146.

A. Kameyama, Distances on topological self-similar sets and the kneading determinants, J. Math. Kyoto Univ. 40 (2000), 601–672.

B. Kieninger, Iterated Function Systems on Compact Hausdorff Spaces. Ph.D. Thesis, Augsburg University, Shaker–Verlag, Aachen 2002.

S. Leader, Equivalent Cauchy sequences and contractive fixed points in metric spaces, Studia Math. 76 (1983), 63–67.

J. Matkowski, Integrable solutions of functional equations, Diss. Math. 127 (1975) 68 pp.

R. Miculescu and A. Mihail, Alternative characterization of hyperbolic affine infinite iterated function systems, J. Math. Anal. Appl. 407 (2013) 56–68.

R. Miculescu and A. Mihail, On a question of A. Kameyama concerning self-similar metrics, J. Math. Anal. Appl. DOI: 10.1016/j.jmaa.2014.08.008.

A. Mihail, A topological version of iterated function systems, An. Stiint. Univ. Al. I. Cuza, Ia si, (S.N.), Matematica, Tom 58 (2012), 105–120.

M. Nowak and T. Szarek, The shark teeth is a topological IFS-attractor, Siberian Math. J. 55 (2014), 296–300.

Vol 46, No 2 (December 2015)

Downloads

  • PREVIEW
  • FULL TEXT

Published

2015-12-01

How to Cite

1.
BANAKH, Taras, KUBIŚ, Wiesław, NOVOSAD, Natalia, NOWAK, Magdalena and STROBIN, Filip. Contractive function systems, their attractors and metrization. Topological Methods in Nonlinear Analysis. Online. 1 December 2015. Vol. 46, no. 2, pp. 1029 - 1066. [Accessed 4 July 2025]. DOI 10.12775/TMNA.2015.076.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 46, No 2 (December 2015)

Section

Articles

Stats

Number of views and downloads: 373
Number of citations: 20

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop