Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Morse homotopy and topological conformal field theory
  • Strona domowa
  • /
  • Morse homotopy and topological conformal field theory
  1. Strona domowa /
  2. Archiwum /
  3. Vol 45, No 1 (March 2015) /
  4. Articles

Morse homotopy and topological conformal field theory

Autor

  • Viktor Fromm Humboldt-Universitat Berlin, Institut fur Mathematik

DOI:

https://doi.org/10.12775/TMNA.2015.001

Słowa kluczowe

Morse complex, topological conformal field theory, flow graph, ribbon graph, moduli space

Abstrakt

By studying spaces of flow graphs in a closed oriented manifold, we equip the Morse complex with the operations of an open topological conformal field theory. This complements previous constructions due to R. Cohen et al., K. Costello, K. Fukaya and M. Kontsevich and is also the Morse theoretic counterpart to a conjectural construction of operations on the chain complex of the Lagrangian Floer homology of the zero section of a cotangent bundle, obtained by studying uncompactified moduli spaces of higher genus pseudoholomorphic curves.
Vol 45, No 1 (March 2015)

Pobrania

  • Full Text (English)

Opublikowane

2015-03-01

Jak cytować

1.
FROMM, Viktor. Morse homotopy and topological conformal field theory. Topological Methods in Nonlinear Analysis [online]. 1 marzec 2015, T. 45, nr 1, s. 7–36. [udostępniono 5.7.2025]. DOI 10.12775/TMNA.2015.001.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 45, No 1 (March 2015)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa