Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A second order differential inclusion with proximal normal cone in Banch spaces
  • Strona domowa
  • /
  • A second order differential inclusion with proximal normal cone in Banch spaces
  1. Strona domowa /
  2. Archiwum /
  3. Vol 44, No 1 (September 2014) /
  4. Articles

A second order differential inclusion with proximal normal cone in Banch spaces

Autor

  • Fatine Aliouane
  • Dalila Azzam-Laouir

Słowa kluczowe

Differential inclusion, uniformly smooth Banach space, sweeping process, proximal normal cone

Abstrakt

In the present paper we mainly consider the second order evolution inclusion with proximal normal cone: $$ \begin{cases} -\ddot{x}(t)\in N_{K(t)}(\dot{x}(t))+F(t,x(t),\dot{x}(t)), \quad \textmd{a.e.}\\ \dot x(t)\in K(t),\\ x(0)=x_0,\quad\dot x(0)=u_0, \end{cases} \leqno{(*)} $$ where $t\in I=[0,T]$, $E$ is a separable reflexive Banach space, $K(t)$ a ball compact and $r$-prox-regular subset of $E$, $N_{K(t)}(\cdot)$ the proximal normal cone of $K(t)$ and $F$ an u.s.c. set-valued mapping with nonempty closed convex values. First, we prove the existence of solutions of $(*)$. After, we give an other existence result of $(*)$ when $K(t)$ is replaced by $K(x(t))$.

Pobrania

  • FULL TEXT (English)

Opublikowane

2016-04-12

Jak cytować

1.
ALIOUANE, Fatine & AZZAM-LAOUIR, Dalila. A second order differential inclusion with proximal normal cone in Banch spaces. Topological Methods in Nonlinear Analysis [online]. 12 kwiecień 2016, T. 44, nr 1, s. 143–160. [udostępniono 8.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 44, No 1 (September 2014)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa