Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A critical fractional Laplace equation in the resonant case
  • Strona domowa
  • /
  • A critical fractional Laplace equation in the resonant case
  1. Strona domowa /
  2. Archiwum /
  3. Vol 43, No 1 (March 2014) /
  4. Articles

A critical fractional Laplace equation in the resonant case

Autor

  • Raffaella Servadei

Słowa kluczowe

Critical nonlinearities, best critical Sobolev constant, variationaltechniques, Linking Theorem, integrodifferentialoperators, fractional Laplacian

Abstrakt

In this paper we complete the study of the following non-local fractional equation involving critical nonlinearities $$ \cases (-\Delta)^s u-\lambda u=|u|^{2^*-2}u & {\text{in }} \Omega,\\ u=0 & {\text{in }} \mathbb{R}^n\setminus \Omega, \endcases $$ started in the recent papers \cite{13}, \cite{17}-\cite{19}. Here $s\in (0,1)$ is a fixed parameter, $(-\Delta )^s$ is the fractional Laplace operator, $\lambda$ is a positive constant, $2^*=2n/(n-2s)$ is the fractional critical Sobolev exponent and $\Omega$ is an open bounded subset of $\RR^n$, $n> 2s$, with Lipschitz boundary. Aim of this paper is to study this critical problem in the special case when $n\not=4s$ and $\lambda$ is an eigenvalue of the operator $(-\Delta)^s$ with homogeneous Dirichlet boundary datum. In this setting we prove that this problem admits a non-trivial solution, so that with the results obtained in \cite{13}, \cite{17}-\cite{19}, we are able to show that this critical problem admits a nontrivial solution provided \roster \item"$\bullet$" $n> 4s$ and $\lambda> 0$, \item"$\bullet$" $n=4s$ and $\lambda> 0$ is different from the eigenvalues of $(-\Delta)^s$, \item"$\bullet$" $2s< n< 4s$ and $\lambda> 0$ is sufficiently large. \endroster In this way we extend completely the famous result of Brezis and Nirenberg (see \cite{4}, \cite{5}, \cite{9}, \cite{23}) for the critical Laplace equation to the non-local setting of the fractional Laplace equation.

Pobrania

  • FULL TEXT (English)

Opublikowane

2016-04-12

Jak cytować

1.
SERVADEI, Raffaella. A critical fractional Laplace equation in the resonant case. Topological Methods in Nonlinear Analysis [online]. 12 kwiecień 2016, T. 43, nr 1, s. 251–267. [udostępniono 24.12.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 43, No 1 (March 2014)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa