Existence of positive solutions for a second order periodic boundary value problem with impulsive effects
Słowa kluczowe
Periodic boundary value problem, fixed point theorem, positive solution, coneAbstrakt
In this paper, we are mainly concerned with the existence and multiplicity of positive solutions for the following second order periodic boundary value problem involving impulsive effects $$ \begin{cases} -u''+\rho^2u=f(t,u), & t\in J',\\ -\Delta u'|_{t=t_k}=I_k(u(t_k)), & k=1,\ldots,m,\\ u(0)-u(2\pi)=0,\quad u'(0)-u'(2\pi)=0. \end{cases} $$ Here $J'=J\setminus \{t_1,\ldots, t_m\}$, $f\in C(J\times \mathbb{R}^+, \mathbb{R}^+)$, $I_k\in C( \mathbb{R}^+, \mathbb{R}^+)$, where $ \mathbb{R}^+=[0,\infty)$, $J=[0,2\pi]$. The proof of our main results relies on the fixed point theorem on cones. The paper extends some previous results and reports some new results about impulsive differential equations.Pobrania
Opublikowane
2016-04-12
Jak cytować
1.
XU, Jiafa, WEI, Zhongli & DING, Youzheng. Existence of positive solutions for a second order periodic boundary value problem with impulsive effects. Topological Methods in Nonlinear Analysis [online]. 12 kwiecień 2016, T. 43, nr 1, s. 11–22. [udostępniono 6.7.2025].
Numer
Dział
Articles
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0