Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Global structure of positive solutions for superlinear second order $m$-point boundary value problems
  • Strona domowa
  • /
  • Global structure of positive solutions for superlinear second order $m$-point boundary value problems
  1. Strona domowa /
  2. Archiwum /
  3. Vol 34, No 2 (December 2009) /
  4. Articles

Global structure of positive solutions for superlinear second order $m$-point boundary value problems

Autor

  • Ruyun Ma
  • Yulian An

Słowa kluczowe

Multiplicity results, multi-point boundary value problem, eigenvalues, bifurcation methods, positive solutions

Abstrakt

In this paper, we consider the nonlinear eigenvalue problems $$ \gather u''+\lambda h(t)f(u)=0, \quad 0< t< 1, \\ u(0)=0,\quad u(1)=\sum_{i=1}^{m-2}\alpha_iu(\eta_i), \endgather $$ where $m\geq 3$, $ \eta_i\in (0,1)$ and $\alpha_i> 0$ for $i=1,\ldots,m-2$, with $\sum_{i=1}^{m-2}\alpha_i\eta_i< 1$; $h\in C([0,1], [0,\infty))$ and $h(t)\ge 0$ for $t\in [0,1]$ and $h(t_0)> 0$ for $t_0\in [0,1]$; $f\in C([0,\infty),[0,\infty))$ and $f(s)> 0$ for $s> 0$, and $f_0=\infty$, where $f_0=\lim_{s\rightarrow 0^+}f(s)/s$. We investigate the global structure of positive solutions by using the nonlinear Krein-Rutman Theorem.

Pobrania

  • FULL TEXT (English)

Opublikowane

2009-12-01

Jak cytować

1.
MA, Ruyun & AN, Yulian. Global structure of positive solutions for superlinear second order $m$-point boundary value problems. Topological Methods in Nonlinear Analysis [online]. 1 grudzień 2009, T. 34, nr 2, s. 279–290. [udostępniono 3.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 34, No 2 (December 2009)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa