Multiplicity results for some quasilinear elliptic problems
Słowa kluczowe
Quasilinear elliptic problems, p-Laplace operator, multiplicity of solutions, critical groups, linking theoremsAbstrakt
In this paper, we study multiplicity of weak solutions for the following class of quasilinear elliptic problems of the form $$ -\Delta_p u -\Delta u = g(u)-\lambda |u|^{q-2}u \quad \text{in } \Omega \text{ with } u=0 \text{ on } \partial\Omega, $$ where $ \Omega $ is a bounded domain in ${\mathbb R}^n $ with smooth boundary $\partial\Omega$, $ 1< q< 2< p\leq n$, $\lambda$ is a real parameter, $\Delta_p u = \dive(|\nabla u|^{p-2}\nabla u ) $ is the $ p $-Laplacian and the nonlinearity $g(u)$ has subcritical growth. The proofs of our results rely on some linking theorems and critical groups estimates.Pobrania
Opublikowane
2009-09-01
Jak cytować
1.
DE PAIVA, Francisco Odair, DO Ó, João Marcos & DE MEDEIROS, Everaldo Souto. Multiplicity results for some quasilinear elliptic problems. Topological Methods in Nonlinear Analysis [online]. 1 wrzesień 2009, T. 36, nr 1, s. 77–89. [udostępniono 6.7.2025].
Numer
Dział
Articles
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0