Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Function bases for topological vector spaces
  • Strona domowa
  • /
  • Function bases for topological vector spaces
  1. Strona domowa /
  2. Archiwum /
  3. Vol 33, No 2 (June 2009) /
  4. Articles

Function bases for topological vector spaces

Autor

  • Yilmaz Yilmaz

Słowa kluczowe

Biorthogonal systems, Schauder bases, generalization of bases, operators on function spaces, vector-valued function spaces, representation of operators

Abstrakt

Our main interest in this work is to characterize certain operator spaces acting on some important vector-valued function spaces such as $(V_{a}) _{c_{0}}^{a\in{\mathbb A}}$, by introducing a new kind basis notion for general Topological vector spaces. Where ${\mathbb A}$ is an infinite set, each $V_{a}$ is a Banach space and $( V_{a}) _{c_{0}}^{a\in{\mathbb A}}$ is the linear space of all functions $x\colon{\mathbb A} \rightarrow\bigcup V_{a}$ such that, for each $\varepsilon> 0$, the set $\{ a\in{\mathbb A}:\Vert x_{a}\Vert > \varepsilon\} $ is finite or empty. This is especially important for the vector-valued sequence spaces $( V_{i}) _{c_{0}}^{i\in{\mathbb N}}$ because of its fundamental place in the theory of the operator spaces (see, for example,[H. P. Rosenthal, {\it The complete separable extension property}, J. Oper. Theory, 43, No. 2, (2000), 329-374]).

Pobrania

  • FULL TEXT (English)

Opublikowane

2009-06-01

Jak cytować

1.
YILMAZ, Yilmaz. Function bases for topological vector spaces. Topological Methods in Nonlinear Analysis [online]. 1 czerwiec 2009, T. 33, nr 2, s. 335–353. [udostępniono 5.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 33, No 2 (June 2009)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa