Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On the suspension isomorphism for index braids in a singular perturbation problem
  • Strona domowa
  • /
  • On the suspension isomorphism for index braids in a singular perturbation problem
  1. Strona domowa /
  2. Archiwum /
  3. Vol 32, No 2 (December 2008) /
  4. Articles

On the suspension isomorphism for index braids in a singular perturbation problem

Autor

  • Maria C. Carbinatto
  • Krzysztof P. Rybakowski

Słowa kluczowe

Singular perturbations, differential equations on manifolds, Conley index, (co)homology index braid, continuation properties

Abstrakt

We consider the singularly perturbed system of ordinary differential equations $$ \aligned \varepsilon\dot y&=f(y,x,\varepsilon), \\ \dot x&=h(y,x,\varepsilon) \endaligned \leqno(E_\varepsilon) $$ on $Y\times \Cal{M}$, where $Y$ is a finite dimensional normed space and $\Cal{M}$ is a smooth manifold. We assume that there is a reduced manifold of $(E_\varepsilon)$ given by the graph of a function $\phi\co \Cal{M}\to Y$ and satisfying an appropriate hyperbolicity assumption with unstable dimension $k\in{\mathbb N}_0$. We prove that every Morse decomposition $(M_p)_{p\in P}$ of a compact isolated invariant set $S_0$ of the reduced equation $$ \dot x=h(\phi(x),x,0) $$ gives rises, for $\varepsilon> 0$ small, to a Morse decomposition $(M_{p,\varepsilon})_{p\in P}$ of an isolated invariant set $S_\varepsilon$ of $(E_\varepsilon)$ such that $(S_\varepsilon,(M_{p,\varepsilon})_{p\in P})$ is close to $(\{0\}\times S_0,(\{0\}\times M_p)_{p\in P})$ and the (co)homology index braid of $(S_\varepsilon,(M_{p,\varepsilon})_{p\in P})$ is isomorphic to the (co)homology index braid of $(S_0,(M_{p})_{p\in P})$ shifted by $k$ to the left.

Pobrania

  • FULL TEXT (English)

Opublikowane

2008-12-01

Jak cytować

1.
CARBINATTO, Maria C. & RYBAKOWSKI, Krzysztof P. On the suspension isomorphism for index braids in a singular perturbation problem. Topological Methods in Nonlinear Analysis [online]. 1 grudzień 2008, T. 32, nr 2, s. 199–225. [udostępniono 7.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 32, No 2 (December 2008)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa