Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Symmetric homoclinic solutions to the periodic orbits in the Michelson system
  • Strona domowa
  • /
  • Symmetric homoclinic solutions to the periodic orbits in the Michelson system
  1. Strona domowa /
  2. Archiwum /
  3. Vol 28, No 1 (September 2006) /
  4. Articles

Symmetric homoclinic solutions to the periodic orbits in the Michelson system

Autor

  • Daniel Wilczak

Słowa kluczowe

Differential equations, symmetric homoclinic orbits, rigorous numerical analysis

Abstrakt

The Michelson system [D. Michelson, < i> Steady solutions of the Kuramoto–Sivashinsky equation< /i> , Physica D < b> 19< /b> (1986), 89–111] $x'''+x'+0.5x^2=c^2$ for the parameter value $c=1$ is investigated. It was proven in \cite{8} that the system possesses two odd periodic solutions. We shall show that there exist infinitely many homoclinic and heteroclinic connections between them. Moreover, we shall show that the family of homoclinic solutions contains a countable set of odd homoclinic solutions.

Pobrania

  • FULL TEXT (English)

Opublikowane

2006-09-01

Jak cytować

1.
WILCZAK, Daniel. Symmetric homoclinic solutions to the periodic orbits in the Michelson system. Topological Methods in Nonlinear Analysis [online]. 1 wrzesień 2006, T. 28, nr 1, s. 155–170. [udostępniono 4.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 28, No 1 (September 2006)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa