Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topologies on the group of Borel automorphisms of a standard Borel space
  • Strona domowa
  • /
  • Topologies on the group of Borel automorphisms of a standard Borel space
  1. Strona domowa /
  2. Archiwum /
  3. Vol 27, No 2 (June 2006) /
  4. Articles

Topologies on the group of Borel automorphisms of a standard Borel space

Autor

  • Sergey Bezuglyi
  • Anthony H. Dooley
  • Jan Kwiatkowski

Słowa kluczowe

Standard Borel space, aperiodic and periodic automorphisms, odometer, Borel-Bratelli diagram

Abstrakt

The paper is devoted to the study of topologies on the group $\text{\rm Aut}(X,{\Cal B})$ of all Borel automorphisms of a standard Borel space $(X, {\mathcal B})$. Several topologies are introduced and all possible relations between them are found. One of these topologies, $\tau$, is a direct analogue of the uniform topology widely used in ergodic theory. We consider the most natural subsets of $\text{\rm Aut}(X,{\mathcal B})$ and find their closures. In particular, we describe closures of subsets formed by odometers, periodic, aperiodic, incompressible, and smooth automorphisms with respect to the defined topologies. It is proved that the set of periodic Borel automorphisms is dense in $\text{\rm Aut}(X,{\mathcal B})$ (Rokhlin lemma) with respect to $\tau$. It is shown that the $\tau$-closure of odometers (and of rank $1$ Borel automorphisms) coincides with the set of all aperiodic automorphisms. For every aperiodic automorphism $T\in \text{\rm Aut}(X,{\mathcal B})$, the concept of a Borel-Bratteli diagram is defined and studied. It is proved that every aperiodic Borel automorphism $T$ is isomorphic to the Vershik transformation acting on the space of infinite paths of an ordered Borel-Bratteli diagram. Several applications of this result are given.

Pobrania

  • FULL TEXT (English)

Opublikowane

2006-06-01

Jak cytować

1.
BEZUGLYI, Sergey, DOOLEY, Anthony H. & KWIATKOWSKI, Jan. Topologies on the group of Borel automorphisms of a standard Borel space. Topological Methods in Nonlinear Analysis [online]. 1 czerwiec 2006, T. 27, nr 2, s. 333–385. [udostępniono 13.5.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 27, No 2 (June 2006)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa