Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On a second order boundary value problem with singular nonlinearity
  • Strona domowa
  • /
  • On a second order boundary value problem with singular nonlinearity
  1. Strona domowa /
  2. Archiwum /
  3. Vol 27, No 1 (March 2006) /
  4. Articles

On a second order boundary value problem with singular nonlinearity

Autor

  • Vieri Benci
  • Anna Maria Micheletti
  • Edlira Shteto

Słowa kluczowe

Variational methods, elliptic problems, singular nonlinearity

Abstrakt

In this paper we investigate in a variational setting, the elliptic boundary value problem $-\Delta u={\textt{sign}u}/{|u|^{\alpha+1}}$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\Omega$ is an open connected bounded subset of ${\mathbb R}^N$, and $\alpha> 0$. For the positive solution, which is checked as a minimum point of the formally associated functional $$ E(u)=\frac 12\int_\Omega|\nabla u|^2+\frac{1}{\alpha} \int_\Omega \frac1{|u|^\alpha}, $$ we prove dependence on the domain $\Omega$. Moreover, an approximative functional $E_\varepsilon$ is introduced, and an upper bound for the sequence of mountain pass points $u_\varepsilon$ of $E_\varepsilon$, as $\varepsilon\to 0$, is given. For the onedimensional case, all sign-changing solutions of $-u''={\text{sign}u}/{|u|^{\alpha+1}}$ are characterized by their nodal set as the mountain pass point and $n$-saddle points ($n> 1$) of the functional $E$.

Pobrania

  • FULL TEXT (English)

Opublikowane

2006-03-01

Jak cytować

1.
BENCI, Vieri, MICHELETTI, Anna Maria & SHTETO, Edlira. On a second order boundary value problem with singular nonlinearity. Topological Methods in Nonlinear Analysis [online]. 1 marzec 2006, T. 27, nr 1, s. 1–28. [udostępniono 6.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 27, No 1 (March 2006)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa