Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topological index for condensing maps on Finsler manifolds with applications to functional-differential equations of neutral type
  • Strona domowa
  • /
  • Topological index for condensing maps on Finsler manifolds with applications to functional-differential equations of neutral type
  1. Strona domowa /
  2. Archiwum /
  3. Vol 26, No 2 (December 2005) /
  4. Articles

Topological index for condensing maps on Finsler manifolds with applications to functional-differential equations of neutral type

Autor

  • Elena V. Bogacheva
  • Yuri E. Gliklikh

Słowa kluczowe

Topological index, condensing maps, Finsler manifolds, functional-differential equations of neutral type on manifolds

Abstrakt

The topological index for maps of infinite-dimensional Finsler manifolds, condensing with respect to internal Kuratowski's measure of non-compactness, is constructed under the hypothesis that the manifold can be embedded into a certain Banach linear space as a neighbourhood retract so that the Finsler norm in tangent spaces and the restriction of the norm from enveloping space on the tangent spaces are equivalent. It is shown that the index is an internal topological characteristic, i.e. it does not depend on the choice of enveloping space, embedding, etc. The total index (Lefschetz number) and the Nielsen number are also introduced. The developed machinery is applied to investigation of functional-differential equations of neutral type on Riemannian manifolds. A certain existence and uniqueness theorem is proved. It is shown that the shift operator, acting in the manifold of $C^1$-curves, is condensing, its total index is calculated to be equal to the Euler characteristic of (compact) finite-dimensional Riemannian manifold where the equation is given. Some examples of calculating the Nielsen number are also considered.

Pobrania

  • FULL TEXT (English)

Opublikowane

2005-12-01

Jak cytować

1.
BOGACHEVA, Elena V. & GLIKLIKH, Yuri E. Topological index for condensing maps on Finsler manifolds with applications to functional-differential equations of neutral type. Topological Methods in Nonlinear Analysis [online]. 1 grudzień 2005, T. 26, nr 2, s. 287–305. [udostępniono 18.12.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 26, No 2 (December 2005)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa