Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A Morse index theorem for perturbed geodesics on semi-Riemannian manifolds
  • Strona domowa
  • /
  • A Morse index theorem for perturbed geodesics on semi-Riemannian manifolds
  1. Strona domowa /
  2. Archiwum /
  3. Vol 25, No 1 (March 2005) /
  4. Articles

A Morse index theorem for perturbed geodesics on semi-Riemannian manifolds

Autor

  • Monica Musso
  • Jacobo Pejsachowicz
  • Alessandro Portaluri

Słowa kluczowe

Perturbed geodecics, semi-Riemannian manifold, spectral flow, conjugate points, generalized Morse index

Abstrakt

Perturbed geodesics are trajectories of particles moving on a semi-Riemannian manifold in the presence of a potential. Our purpose here is to extend to perturbed geodesics on semi-Riemannian manifolds the well known Morse Index Theorem. When the metric is indefinite, the Morse index of the energy functional becomes infinite and hence, in order to obtain a meaningful statement, we substitute the Morse index by its relative form, given by the spectral flow of an associated family of index forms. We also introduce a new counting for conjugate points, which need not to be isolated in this context, and prove that our generalized Morse index equals the total number of conjugate points. Finally we study the relation with the Maslov index of the flow induced on the Lagrangian Grassmannian.

Pobrania

  • FULL TEXT (English)

Opublikowane

2005-03-01

Jak cytować

1.
MUSSO, Monica, PEJSACHOWICZ, Jacobo & PORTALURI, Alessandro. A Morse index theorem for perturbed geodesics on semi-Riemannian manifolds. Topological Methods in Nonlinear Analysis [online]. 1 marzec 2005, T. 25, nr 1, s. 69–99. [udostępniono 2.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 25, No 1 (March 2005)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa