Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A set-valued approach to hemivariational inequalities
  • Strona domowa
  • /
  • A set-valued approach to hemivariational inequalities
  1. Strona domowa /
  2. Archiwum /
  3. Vol 24, No 2 (December 2004) /
  4. Articles

A set-valued approach to hemivariational inequalities

Autor

  • Alexandru Kristály
  • Csaba Varga

Słowa kluczowe

Measurable set-valued maps, variational-hemivariational inequalities

Abstrakt

Let $X$ be a Banach space, $X^*$ its dual and let $T\colon X\to L^p(\Omega ,\mathbb {R}^k)$ be a linear, continuous operator, where $p, k\ge 1$, $\Omega $ being a bounded open set in $\mathbb {R}^N$. Let $K$ be a subset of $X$, ${\mathcal A}\colon K\rightsquigarrow X^*$, $G\colon K\times X\rightsquigarrow \mathbb {R}$ and $F\colon \Omega \times \mathbb {R}^k\times \mathbb {R}^k\rightsquigarrow \mathbb {R}$ set-valued maps with nonempty values. Using mainly set-valued analysis, under suitable conditions on the involved maps, we shall guarantee solutions to the following inclusion problem: {\it Find $u\in K$ such that, for every } $v\in K$ $$\sigma ({\mathcal A}(u),v-u)+G(u,v-u)+ \int_\Omega F(x,T{u}(x),T{v}(x)-T{u}(x))dx \subseteq \mathbb {R}_+.$$ In particular, well-known variational and hemivariational inequalities can be derived.

Pobrania

  • FULL TEXT (English)

Opublikowane

2004-12-01

Jak cytować

1.
KRISTÁLY, Alexandru & VARGA, Csaba. A set-valued approach to hemivariational inequalities. Topological Methods in Nonlinear Analysis [online]. 1 grudzień 2004, T. 24, nr 2, s. 297–307. [udostępniono 5.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 24, No 2 (December 2004)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa