Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Singularly perturbed Neumann problems with potentials
  • Strona domowa
  • /
  • Singularly perturbed Neumann problems with potentials
  1. Strona domowa /
  2. Archiwum /
  3. Vol 23, No 2 (June 2004) /
  4. Articles

Singularly perturbed Neumann problems with potentials

Autor

  • Alessio Pomponio

Słowa kluczowe

Singularly perturbed Neumann problem, presence of potentials, concentrating solutions

Abstrakt

The main purpose of this paper is to study the existence of single-peaked solutions of the Neumann problem $$ \cases -\varepsilon^2 \text{\rm div} \left(J(x)\nabla u\right)+V(x)u=u^p & \text{in }\Omega, \\ \displaystyle \dfrac{\partial u}{\partial \nu}=0 & \text{on }\partial\Omega, \endcases $$ where $\Omega$ is a smooth bounded domain of $\{\mathbb R}^N$, $N\ge 3$, $1< p< (N+2)/(N-2)$ and $J$ and $V$ are positive bounded scalar value potentials. We will show that, for the existence of concentrating solutions, one has to check if at least one between $J$ and $V$ is not constant on $\partial \Omega$. In this case the concentration point is determined by $J$ and $V$ only. In the other case the concentration point is determined by an interplay among the derivatives of $J$ and $V$ calculated on $\partial \Omega$ and the mean curvature $H$ of $\partial \Omega$.

Pobrania

  • FULL TEXT (English)

Opublikowane

2004-06-01

Jak cytować

1.
POMPONIO, Alessio. Singularly perturbed Neumann problems with potentials. Topological Methods in Nonlinear Analysis [online]. 1 czerwiec 2004, T. 23, nr 2, s. 301–322. [udostępniono 6.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 23, No 2 (June 2004)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa