Symmetry results for perturbed problems and related questions
Słowa kluczowe
Elliptic equations, symmetry of solutionsAbstrakt
In this paper we prove a symmetry result for positive solutions of the Dirichlet problem $$ \cases -\Delta u=f(u) & \hbox{in }D,\\ u=0 & \hbox{on }\partial D, \endcases \tag{0.1} $$ when $f$ satisfies suitable assumptions and $D$ is a small symmetric perturbation of a domain $\Omega$ for which the Gidas-Ni-Nirenberg symmetry theorem applies. We consider both the case when $f$ has subcritical growth and $f(s)=s^{(N+2)/(N-2)}+\lambda s$, $N\ge3$, $\lambda$ suitable positive constant.Pobrania
Opublikowane
2003-06-01
Jak cytować
1.
GROSSI, Massimo, PACELLA, Filomena & YADAVA, S. L. Symmetry results for perturbed problems and related questions. Topological Methods in Nonlinear Analysis [online]. 1 czerwiec 2003, T. 21, nr 2, s. 211–226. [udostępniono 5.7.2025].
Numer
Dział
Articles
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0