Well-posedness and porosity in best approximation problems
Słowa kluczowe
Banach space, complete metric space, generic property, hyperbolic space, nearest point, porous setAbstrakt
Given a nonempty closed subset $A$ of a Banach space $X$ and a point $x \in X$, we consider the problem of finding a nearest point to $x$ in $A$. We define an appropriate complete metric space $\mathcal M$ of all pairs $(A,x)$ and construct a subset $\Omega$ of $\mathcal M$ which is the countable intersection of open everywhere dense sets such that for each pair in $\Omega$ this problem is well-posed. As a matter of fact, we show that the complement of $\Omega$ is not only of the first category, but also sigma-porous.Pobrania
Opublikowane
2001-12-01
Jak cytować
1.
REICH, Simeon & ZASLAVSKI, Alexander J. Well-posedness and porosity in best approximation problems. Topological Methods in Nonlinear Analysis [online]. 1 grudzień 2001, T. 18, nr 2, s. 395–408. [udostępniono 4.7.2025].
Numer
Dział
Articles
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0