Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Asymptotic behavior of solutions of some nonlinearly damped wave equations on $\mathbb R^N$
  • Strona domowa
  • /
  • Asymptotic behavior of solutions of some nonlinearly damped wave equations on $\mathbb R^N$
  1. Strona domowa /
  2. Archiwum /
  3. Vol 18, No 1 (September 2001) /
  4. Articles

Asymptotic behavior of solutions of some nonlinearly damped wave equations on $\mathbb R^N$

Autor

  • Nikos Karachalios
  • Nikos M. Stavrakakis

Słowa kluczowe

Semilinear hyperbolic equations, blow-up, nonlinear dissipation, potential well, concavity method, unbounded domains, generalized Sobolev spaces

Abstrakt

We discuss the asymptotic behavior of solutions of the nonlinearly damped wave equation $$ u_{tt} +\delta \vert u_t\vert ^{m-1}u_t -\phi (x)\Delta u = \lambda u\vert u\vert ^{\beta -1}, \quad x \in \mathbb R^n, \ t \geq 0, $$ with the initial conditions $ u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N \geq 3$, $ \delta > 0$ and $(\phi (x))^{-1} =g (x)$ is a positive function lying in $L^{p}(\mathbb R^n)\cap L^{\infty}(\mathbb R^n)$, for some $p$. We prove blow-up of solutions when the source term dominates over the damping, and the initial energy is assumed to be positive. We also discuss global existence energy decay of solutions.

Pobrania

  • FULL TEXT (English)

Opublikowane

2001-09-01

Jak cytować

1.
KARACHALIOS, Nikos & STAVRAKAKIS, Nikos M. Asymptotic behavior of solutions of some nonlinearly damped wave equations on $\mathbb R^N$. Topological Methods in Nonlinear Analysis [online]. 1 wrzesień 2001, T. 18, nr 1, s. 73–87. [udostępniono 16.12.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 18, No 1 (September 2001)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa