Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Stability of travelling-wave solutions for reaction-diffusion-convection systems
  • Strona domowa
  • /
  • Stability of travelling-wave solutions for reaction-diffusion-convection systems
  1. Strona domowa /
  2. Archiwum /
  3. Vol 16, No 1 (September 2000) /
  4. Articles

Stability of travelling-wave solutions for reaction-diffusion-convection systems

Autor

  • Elaine C. M. Crooks

Słowa kluczowe

Travelling waves, fronts, stability, bistable nonlinearity, comparison principles, reaction-diffusion-convection systems

Abstrakt

We are concerned with the asymptotic behaviour of classical solutions of systems of the form $$ \cases u_{t} = A u_{xx} + f(u, u_{x}) &\text{for } x \in {\mathbb R},\ t> 0,\ u(x,t) \in {\mathbb R}^N,\\ u(x,0) = \varphi (x),& \endcases\tag{1} $$ where $A$ is a positive-definite diagonal matrix and $f$ is a "bistable" nonlinearity satisfying conditions which guarantee the existence of a comparison principle for (1). Suppose that (1) has a travelling-front solution $w$ with velocity $c$, that connects two stable equilibria of $f$. (There are hypotheses on $f$ under which such a front is known to exist [E. C. M. Crooks and J. F. Toland, < i> Travelling waves for reaction-diffusion-convection systems< /i> , Topol. Methods Nonlinear Anal. < b> 11< /b> (1998), 19–43].) We show that if $\varphi$ is bounded, uniformly continuously differentiable and such that $\Vert w(x) - \varphi (x) \Vert $ is small when $|x|$ is large, then there exists $\chi \in {\mathbb R}$ such that $$ \Vert u(\cdot, t) - w(\cdot + \chi - ct) \Vert _{BUC^{1}} \rightarrow 0 \quad\text{as } t \rightarrow \infty.\tag{2} $$ Our approach extends an idea developed by Roquejoffre, Terman and Volpert in the convectionless case, where $f$ is independent of $u_{x}$. First $\varphi$ is assumed to be increasing in $x$, and (2) proved via a homotopy argument. Then we deduce the result for arbitrary $\varphi$ by showing that there is an increasing function in the $\omega$-limit set of $\varphi$.

Pobrania

  • FULL TEXT (English)

Opublikowane

2000-09-01

Jak cytować

1.
CROOKS, Elaine C. M. Stability of travelling-wave solutions for reaction-diffusion-convection systems. Topological Methods in Nonlinear Analysis [online]. 1 wrzesień 2000, T. 16, nr 1, s. 37–63. [udostępniono 6.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 16, No 1 (September 2000)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa