Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On symplectic manifolds with aspherical symplectic form
  • Strona domowa
  • /
  • On symplectic manifolds with aspherical symplectic form
  1. Strona domowa /
  2. Archiwum /
  3. Vol 14, No 2 (December 1999) /
  4. Articles

On symplectic manifolds with aspherical symplectic form

Autor

  • Yuli B. Rudyak
  • Aleksy Tralle

Słowa kluczowe

Lusternik-Schnirelmann category, sympletic manifolds

Abstrakt

We consider closed symplectically aspherical manifolds, i.e. closed symplectic manifolds $(M,\omega)$ satisfying the condition $[\omega]|_{\pi_2M}=0$. Rudyak and Opre[< i> On the Lustrnik–Schnirelmann category of symplectic manifolds and the Arnold conjecture< /i> , Math. Z. < b> 230< /b> (1999), 673–678] remarked that such manifolds have nice and controllable homotopy properties. Now it is clear that these properties are mostly determined by the fact that the strict category weight of $[\omega]$ equals 2. We apply the theory of strict category weight to the problem of estimating the number of closed orbits of charged particles in symplectic magnetic fields. In case of symplectically aspherical manifolds our theory enables us to improve some known estimations.

Pobrania

  • FULL TEXT (English)

Opublikowane

1999-12-01

Jak cytować

1.
RUDYAK, Yuli B. & TRALLE, Aleksy. On symplectic manifolds with aspherical symplectic form. Topological Methods in Nonlinear Analysis [online]. 1 grudzień 1999, T. 14, nr 2, s. 353–362. [udostępniono 4.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 14, No 2 (December 1999)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa