Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Nonlinear eigenvalue problems admitting eigenfunctions with known geometric properties
  • Strona domowa
  • /
  • Nonlinear eigenvalue problems admitting eigenfunctions with known geometric properties
  1. Strona domowa /
  2. Archiwum /
  3. Vol 13, No 1 (March 1999) /
  4. Articles

Nonlinear eigenvalue problems admitting eigenfunctions with known geometric properties

Autor

  • Michael Heid
  • Hans-Peter Heinz

Słowa kluczowe

Ljusternik-Schnirelman levels, Krasnosel'skiĭ genus, nodal properties o solutions, nonlinear Sturm-Liouville problems, nonlinear Hill's equation, semilinear second-order systems, periodic solutions, Morse index

Abstrakt

We consider nonlinear eigenvalue problems of the form $$ A_0 y + B(y) y = \lambda y \tag{$*$} $$ in a real Hilbert space $\mathcal H$, where $A_0$ is a semi-bounded self-adjoint operator and, for every $y$ from a certain dense subspace $X$ of $\mathcal H, B(y)$ is a bounded symmetric linear operator. The left hand side is assumed to be the gradient of a functional $\psi \in C^1(x)$, and the associated linear problems $$ A_0 v + B(y) v = \mu v \tag{$**$} $$ are supposed to have discrete spectrum $(y \in X)$. We present a new topological method which permits, under appropriate assumptions, to construct solutions of ($*$) on a sphere $S_R := \{ y \in X \mid \|y\|_{\mathcal H} = R\}$ whose $\psi$-value is the $n$th Ljusternik-Schnirelman level of $\psi |_{S_R}$ and whose corresponding eigenvalue is the $n$th eigenvalue of the associated linear problem ($**$), where $R > 0$ and $n \in \mathbb N$ are given. In applications, the eigenfunctions thus found share any geometric property enjoyed by an $n$-th eigenfunction of a linear problem of the form ($**$). We discuss applications to nonlinear Sturm-Liouville problems, to the nonlinear Hill's equation, to periodic solutions of second-order systems, and to elliptic partial differential equations with radial symmetry.

Pobrania

  • FULL TEXT (English)

Opublikowane

1999-03-01

Jak cytować

1.
HEID, Michael & HEINZ, Hans-Peter. Nonlinear eigenvalue problems admitting eigenfunctions with known geometric properties. Topological Methods in Nonlinear Analysis [online]. 1 marzec 1999, T. 13, nr 1, s. 17–51. [udostępniono 6.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 13, No 1 (March 1999)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa