Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The concentration behavior of ground states solution for a Schrödinger system of Hamiltonian type
  • Strona domowa
  • /
  • The concentration behavior of ground states solution for a Schrödinger system of Hamiltonian type
  1. Strona domowa /
  2. Archiwum /
  3. Online First Articles /
  4. Articles

The concentration behavior of ground states solution for a Schrödinger system of Hamiltonian type

Autor

  • Ruowen Qiu
  • Yang-Yang Yu https://orcid.org/0000-0002-7409-7429
  • Fukun Zhao

DOI:

https://doi.org/10.12775/TMNA.2025.019

Słowa kluczowe

Nonlinear Schrödinger system, linking theorem, generalized Nehari manifold, ground-state solution, concentration

Abstrakt

In this paper, we consider the following nonlinear Schrödinger system of Hamiltonian type \begin{equation*} \begin{cases} -\varepsilon^2 \Delta u+u+V(x)v=H_v(u,v), & x\in \mathbb{R}^N, \\ -\varepsilon^2 \Delta v+v+V(x) u= H_u(u, v),& x\in \mathbb{R}^N,\\ u(x)\rightarrow0 \text{ and } v(x)\rightarrow0 & \text{as}\ |x|\rightarrow\infty, \end{cases} \end{equation*} where $\varepsilon> 0$ is a small parameter, $V\in C^1(\mathbb{R}^N,\ \mathbb{R})$, $H\in C^1(\mathbb{R}\times\mathbb{R},\mathbb{R})$ and $(u,v)\in\mathbb{R}^2$. Under only a local condition that $V$ has a local trapping potential well, a ground state $z_\varepsilon=(u_\varepsilon,v_\varepsilon)$ of the above Schrödinger system is obtained via a combination of linking-type arguments with the generalized Nehari manifold. Moreover, we also show that ground state solution $z_\varepsilon$ concentrating around the local minimum points of the potential $V$ as $\varepsilon\rightarrow 0^+$.

Bibliografia

C.O. Alves, P.C. Carrião and O.H. Miyagaki, On the existence of positive solutions of a perturbed Hamiltonian system in RN , J. Math. Anal. Appl. 276 (2002), 673–690.

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. (2) 75 (2007), 67–82.

A.I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems, J. Differential Equations 191 (2003), 348–376.

T. Bartsch and D.G. de Figueiredo, Infinitely many solutions of nonlinear elliptic systems, Progr. Nonlinear Differential Equations Appl. 35 (1999), 51–67.

D. Bonheure, E. Moreira dos Santos and M. Ramos, Ground state and non-ground state solutions of some strongly coupled elliptic systems, Trans. Amer. Math. Soc. 364 (2012), 447–491.

J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Rational Mech. Anal. 185 (2007), 185–200.

J. Byeon and Z.Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Rational Mech. Anal. 165 (2002), 295–316.

J. Byeon and Z.Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations II, Calc. Var. Partial Differential Equations 18 (2003), 207–219.

X. Chang and Y. Sato, Multiplicity of localized solutions of nonlinear Schrödinger systems for infinite attractive case, J. Math. Anal. Appl. 491 (2020), 124358.

S. Chen and Z. Q. Wang, Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 56 (2017), 1.

D.G. de Figueiredo, Semilinear elliptic systems: existence, multiplicity, symmetry of solutions, Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. V, Elsevier, North-Holland, Amsterdam, 2008, pp. 1–48.

D.G. de Figueiredo and P.L. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc. 343 (1994), 99–116.

M. del Pino and P.L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (1996), 121–137.

M. del Pino and P.L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 15 (1998), 127–149.

Y. Ding, Infinitely many entire solutions of an elliptic system with symmetry, Topol. Methods Nonlinear Anal. 9 (1997), 313–323.

Y. Ding, C. Lee and F. Zhao, Semiclassical limits of ground state solutions to Schrödinger systems, Calc. Var. Partial Differential Equations 51 (2014), 725–760.

Y. Ding and T. Xu, Concentrating patterns of reaction-diffusion systems: a variational approach, Trans. Amer. Math. Soc. 369 (2017), 97–138.

Y. Ding and T. Xu, Effect of external potentials in a coupled system of multi-component incongruent diffusion, Topol. Methods Nonlinear Anal. 54 (2019), 715–750.

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986), 397–408.

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer–Verlag, Berlin, 1983.

G. Gou and Z. Zhang, Concentration phenomenon of semiclassical states to reactiondiffusion systems, Ann. Mat. Pura Appl. (4) 202 (2023), 1679–1717.

C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. Partial Differential Equations 21 (1996), 787–820.

J. Hulshof and R.C.A.M. Van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114 (1993), 32–58.

N. Ikoma and K. Tanaka, A local mountain pass type result for a system of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 40 (2011), 449–480.

W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations 3 (1998), 441–472.

G. Li and J. Yang, Asymptotically linear elliptic systems, Comm. Partial Differential Equations 29 (2004), 925–954.

T. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 22 (2005), 403–439.

T. Lin and J. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Differential Equations 229 (2006), 538–569.

P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109–145.

P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223–283.

J. Mederski, Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Comm. Partial Differential Equations 41 (2016), 1426–1440.

V. Moroz and J. Van Schaftingen, Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials, Calc. Var. Partial Differential Equations 37 (2010), 1–27.

Y.G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V )a , Comm. Partial Differential Equations 13 (1988), 1499–1519.

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math. 73 (2005), 259–287.

D. Qin, X. Tang and J. Zhang, Ground states for planar Hamiltonian elliptic systems with critical exponential growth, J. Differential Equations 308 (2022), 130–159.

P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), 270–291.

M. Ramos and S.H.M. Soares, On the concentration of solutions of singularly perturbed Hamiltonian systems in RN , Port. Math. 63 (2006), 157–171.

M. Ramos and H. Tavares, Solutions with multiple spike patterns for an elliptic system, Calc. Var. Partial Differential Equations 31 (2008), 1–25.

W. Rudin, Functional Analysis, McGraw–Hill, Inc., New York, 1991.

B. Ruf, Superlinear elliptic equations and systems, Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. V, Elsevier, North-Holland, Amsterdam, 2008, pp. 211–276.

B. Sirakov and S.H.M. Soares, Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type, Trans. Amer. Math. Soc. 362 (2010), 5729–5744.

E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal. 257 (2009), 3802–3822.

X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153(1993), 229-244.

J. Zhang and W. Zhang, Semiclassical states for coupled nonlinear Schrödinger system with competing potentials, J. Geom. Anal. 32 (2022), 114.

F. Zhao, L. Zhao and Y. Ding, Infinitely many solutions for asymptotically linear periodic Hamiltonian elliptic systems, ESAIM Control Optim. Calc. Var. 16 (2010), 77–91.

Topological Methods in Nonlinear Analysis

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2025-12-11

Jak cytować

1.
QIU, Ruowen, YU, Yang-Yang & ZHAO, Fukun. The concentration behavior of ground states solution for a Schrödinger system of Hamiltonian type. Topological Methods in Nonlinear Analysis [online]. 11 grudzień 2025, s. 1–35. [udostępniono 14.12.2025]. DOI 10.12775/TMNA.2025.019.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Online First Articles

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa