Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Short proofs of Cambern's 1968 theorem and its generalizations applicable to fixed point theory
  • Strona domowa
  • /
  • Short proofs of Cambern's 1968 theorem and its generalizations applicable to fixed point theory
  1. Strona domowa /
  2. Archiwum /
  3. Online First Articles /
  4. Articles

Short proofs of Cambern's 1968 theorem and its generalizations applicable to fixed point theory

Autor

  • Maria Japón https://orcid.org/0000-0001-6010-5187
  • Marek Malec https://orcid.org/0000-0001-9892-1403
  • Łukasz Piasecki https://orcid.org/0000-0002-4996-8560

DOI:

https://doi.org/10.12775/TMNA.2025.038

Słowa kluczowe

anach-Mazur distance, distortion of isomorphism, $\ell_1$-preduals, stability of the weak$^*$ fixed point property, nonexpansive mappings

Abstrakt

First we provide short, elementary and self-contained proofs of all known results concerning the lower bounds of the Banach-Mazur distances between the space $c_0$ of sequences converging to $0$ and other $\ell_1$-preduals isomorphic to $c_0$. Then, we use our technique to obtain lower bounds for the Banach-Mazur distances between any two $\ell_1$-preduals $X$ and $Y$. Our estimate depends only on the smallest radiuses $r^*(X)$ and $r^*(Y)$ of the closed balls in $\ell_1$ containing, respectively, all $\sigma(\ell_1,X)$-cluster points and all $\sigma(\ell_1,Y)$-cluster points of the set of all extreme points of the closed unit ball in $\ell_1$, and for any values of $r^*(X)$ and $r^*(Y)$ it is sharp. We apply this result to show that for every $\ell_1$-predual $X$ with $r^*(X)< 1$, every $\ell_1$-predual $Y$ with the distance from $X$ strictly less than $\frac{3-r^*(X)}{1+r^*(X)}$ induces a weak$^*$ topology on $\ell_1$ such that $\ell_1$ has the $\sigma(\ell_1,Y)$-fixed point property for nonexpansive mappings. If we additionally assume that the standard basis in $\ell_1$ is $\sigma(\ell_1,X)$-convergent, then the estimate is precise. The same holds if the standard basis in $\ell_1$ has a finite number of $\sigma(\ell_1,X)$-cluster points and each of them has a finite number of non-zero coordinates. It should be emphasized that the value of this constant was known only for the space $c_0$ so far.

Bibliografia

D.E. Alspach, Quotients of c0 are almost isometric to subspaces of c0 , Proc. Amer. Math. Soc. 79 (1979), 285–288.

S. Banach, Théorie des opérations linéaires, Warszawa, 1932.

M. Cambern, On mappings of sequence spaces, Studia Math. 30 (1968), 73–77.

L. Candido, On the distortion of a linear embedding of C(K) into a C0 (Γ, X) space, J. Math. Anal. Appl. 459 (2018), 1201–1207.

L. Candido and E.M. Galego, How does the distortion of linear embedding of C0 (K) into C0 (Γ, X) spaces depend on the height of K?, J. Math. Anal. Appl. 402 (2013), no. 1, 185–190.

L. Candido and E.M. Galego, How far is C0 (Γ, X) with Γ discrete from C0 (K, X) spaces?, Fund. Math. 218 (2012), 151–163.

L. Candido and E.M. Galego, How far is C(ω) from the other C(K) spaces?, Studia Math. 217 (2013), no. 2, 123–138.

E. Casini, E. Miglierina and L. Piasecki, Explicit models of `1 -preduals and the weak fixed point property in `1 , Topol. Methods Nonlinear Anal. 63 (2024), no. 1, 227–232.

E. Casini, E. Miglierina and L. Piasecki, Hyperplanes in the space of convergent sequences and preduals of `1 , Canad. Math. Bull. 58 (2015), 459–470.

E. Casini, E. Miglierina and L. Piasecki, Separable Lindenstrauss spaces whose duals lack the weak∗ fixed point property for nonexpansive mappings, Studia Math. 238 (2017), no. 1, 1–16.

E. Casini, E. Miglierina and L. Piasecki, Weak∗ fixed point property and the space of affine functions, Proc. Amer. Math. Soc. 149 (2021), 1613–1620.

E. Casini, E. Miglierina, L. Piasecki and R. Popescu, Stability constants of the weak fixed point property in the space `1 , J. Math. Anal. Appl. 452 (2017), no. 1, 673–684.

E. Casini, E. Miglierina, L. Piasecki and R. Popescu, Weak* fixed point property in `1 and polyhedrality in Lindenstrauss spaces, Studia Math. 241 (2018), no. 2, 159–172.

A. Gergont, A note on the Banach–Mazur distances between c0 and other `1 -preduals, Ann. Univ. Mariae Curie-Sklodowska Sect. A 76 (2022), no. 2, 25–30.

A. Gergont and L. Piasecki, On isomorphic embeddings of c into L1 -preduals and some applications, J. Math. Anal. Appl. 492 (2020), no. 1, paper no. 124431, 11 pp.

A. Gergont and L. Piasecki, Some topological and metric properties of the space of `1 -predual hyperplanes in c, Colloq. Math. 168 (2022), no. 2, 229–247.

M.A. Japón, Dual fixed point property on spaces of continuous functions under equivalent norms, J. Math. Anal. Appl. 479 (2019), no. 2, 2090–2103.

M. A. Japón-Pineda and S. Prus, Fixed point property for general topologies in some Banach spaces, Bull. Austral. Math. Soc. 70 (2004), 229–244.

L.A. Karlovitz, On nonexpansive mappings, Proc. Amer. Math. Soc. 55 (1976), 321–325.

L. Piasecki, On Banach space properties that are not invariant under the Banach–Mazur distance 1, J. Math. Anal. Appl. 467 (2018), 1129–1147.

L. Piasecki, On `1 -preduals distant by 1, Ann. Univ. Mariae Curie-Sklodowska Sect. A 72 (2018), no. 2, 41–56.

J. Rondoš and J. Somaglia, Isomorphisms of C(K, E) Spaces and Hight of K, Mediterr. J. Math. 20 (2023), no. 4, paper no. 194, 13 pp.

Topological Methods in Nonlinear Analysis

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2025-11-26

Jak cytować

1.
JAPÓN, Maria, MALEC, Marek & PIASECKI, Łukasz. Short proofs of Cambern’s 1968 theorem and its generalizations applicable to fixed point theory. Topological Methods in Nonlinear Analysis [online]. 26 listopad 2025, s. 1–16. [udostępniono 14.12.2025]. DOI 10.12775/TMNA.2025.038.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Online First Articles

Dział

Articles

Licencja

Prawa autorskie (c) 2025 Maria Japón, Marek Malec, Łukasz Piasecki

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa