Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Improved bounds for fractional integrals in generalized locally convex spaces and applications
  • Home
  • /
  • Improved bounds for fractional integrals in generalized locally convex spaces and applications
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

Improved bounds for fractional integrals in generalized locally convex spaces and applications

Authors

  • Khadidja Nisse https://orcid.org/0000-0002-0230-9437

DOI:

https://doi.org/10.12775/TMNA.2025.004

Keywords

Generalized locally convex spaces, weighted semi-norms, generalized proportional fractional operators, Perov's fixed point theorems

Abstract

Using Bielecki's idea, we begin by introducing generalized locally convex structures on $n$-Cartesian product of the set of continuous functions defined on the half-axis. Within this frame, we prove new boundedness results for generalized proportional fractional (GPF) integral operators of vector order involving maxima and deviating arguments. As a consequence, one of the well-known boundedness results for scalar Riemann-Liouville fractional integral operators is generalized and improved. As an application, a vector approach for coupled systems of nonlinear (GPF) differential equations with maxima is adopted. Based on our findings related to boundedness and using Perov's type fixed point theorem, we establish global existence-uniqueness results under less restrictive conditions compared to those commonly imposed in the literature.

References

M.I. Abbas and S. Hristova, On the initial value problems for Caputo-type generalized proportional vector-order fractional differential equations, Mathematics 9 (2021), 2720.

T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equations 313 (2017).

S.S. Almuthaybiri and C.C. Tisdell, Global existence theory for fractional differential equations: New advances via continuation methods for contractive maps, Analysis 39 (2019), 117–128.

S.S. Almuthaybiri and C.C. Tisdell, Uniqueness of solutions for a coupled system of nonlinear fractional differential equations via weighted norms, Commun. Appl. Nonlinear Anal. 28 (2021), 65–76.

F. Bahidi, A. Boudaoui and B. Krichen, Fixed point theorems in generalized locally convex spaces and applications, Filomat 37 (2023), no. 1, 221–234.

D.D. Bainov and S.G. Hristova, Differential Equations With Maxima, C hapman and Hall CRC, Boca Raton, FL, USA, 2011.

D. Băleanu and O.G. Mustafa, On the global existence of solutions to a class of fractional differential equations, Comput. Math. Appl. 59 (2010), 1835–1841.

A. Bielecki, Une remarque sur la méthode de Banach–Cacciopoli–Tikhonov, Bull. Acad. Polon. Sci. Sér. Sci. Math. 4 (1956), 216–264.

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 1 (2015), 73–85.

M. Cichoñ, H.A.H. Salem and W. Shammakh, On the equivalence between differential and integral forms of Caputo-type fractional problems on Hölder spaces, Mathematics 12 (2024), 2631.

K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2004.

J. Dugundji, Topology, Allyn and Bacon, Inc., 470 Atlantic Avenue, Boston, 1966.

C. Guendouz, J. E. Lazreg, J.J. Nieto and A. Ouahab, Existence and compactness results for a system of fractional differential equations, J. Funct. Spaces 2020 (2020), 1–12.

G.H. Hardy and J.E. Littlewood, Some properties of fractional integrals, I. Math. Z. 27 (1928), 565–606.

F. Jarad and T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 709–722.

F. Jarad, T. Abdeljawad and J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top. 226 (2017), 3457–3471

N.K. Karapetiants and L.D. Shankishvili, A short proof of Hardy–Littlewood-type theorem for fractional integrals in weighted Höolder spaces, Fract. Calc. Appl. Anal. 2 (1999), 177–192.

A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies Elsevier, Amsterdam, 2006.

G. Koethe, Topological Vector Spaces I, Springer, Berlin, Germany, 1969.

Z. Laadjal, T. Abdeljawad and F. Jarad, Study on implicit-type fractional coupled system with integral boundary conditions, Adv. Differential Equations 2020 (2020), article no. 641.

L. Lin, Y. Liu and D. Zhao, On existence-uniqueness results for proportional fractional differential equations and incomplete gamma functions, Mathematics 2021 (2021), article no. 300.

W. Liu and L. Liu, Properties of Hadamard fractional integral and its application, Fractal Fract. 2022, (2022), article no. 670.

M. Medved’, M. Pospı́šil and E. Brestovanská, A new nonlinear integral inequality with a tempered Ψ-Hilfer fractional integral and its application to a class of tempered Ψ-Caputo fractional differential equations, Axioms 13 (2024), article no. 301.

H. Minc, Nonnegative Matrices, John Wiley & Son Inc., New York, 1988.

K. Nisse and L. Nisse, An iterative method for solving a class of fractional functional differential equations with maxima, Mathematics 6 (2018).

A. Novac and R. Precup, Perov type results in gauge spaces and their applications to integral systems on semi-axis, Math. Slovaca 64 (2014), 961–972.

H. Rafeiro and S. Samko, Fractional integrals and derivatives: Mapping properties, Fract. Calc. Appl. Anal. 19 (2016), 580–607.

B.S. Rubin, The fractional integrals and Riesz potentials with radial density in the spaces with power weight, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 21 (1986), 488–503 (Russian).

H.A.H. Salem, M. Cichoñ and W. Shammakh, Existence results for tempered-Hilfer fractional differential problems on Hölder spaces, Symmetry 16 (2024), article no. 700.

S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon & Breach Science Publishers, New York, 1993.

R.S. Varga, Matrix Iterative Analysis, Institute of Computational Mathematics, Springer, Kent State University, Kent, OH 44242, USA, 1999.

P. Zhang and X. Hao, Existence and uniqueness of solutions for nonlinear integrodifferential equations on unbounded domains in Banach spaces, Adv. Difference Equ. 247 (2018).

Topological Methods in Nonlinear Analysis

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-11-26

How to Cite

1.
NISSE, Khadidja. Improved bounds for fractional integrals in generalized locally convex spaces and applications. Topological Methods in Nonlinear Analysis. Online. 26 November 2025. pp. 1 - 21. [Accessed 14 December 2025]. DOI 10.12775/TMNA.2025.004.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

License

Copyright (c) 2025 Khadidja Nisse

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop