On a critical Hamiltonian system with Neumann boundary conditions
DOI:
https://doi.org/10.12775/TMNA.2025.007Słowa kluczowe
Hamiltonian elliptic system, critical hyperbola, Neumann boundary conditions, blowing-up solutionsAbstrakt
We consider the Hamiltonian system with Neumann boundary conditions: \[ \begin{cases} -\Delta u + \mu u=v^{q } & \text{in $\Omega$}, \\ -\Delta v+ \mu v=u^{p} & \text{in $\Omega$}, \\ u, v > 0 & \text{in $\Omega$,} \\ \partial_\nu u= \partial_\nu v=0 & \text{on $\partial \Omega$,} \end{cases} \] where $\mu > 0$ is a parameter and $\Omega$ is a smooth bounded domain in $\mathbb R^N .$ When $(p, q)$ approaches from below the critical hyperbola $N/(p+1) + N/$ $(q+1)=N-2$, we build a solution which blows-up at a boundary point where the mean curvature achieves its minimum and negative value.Bibliografia
A. Adimurthi and G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, Nonlinear Analysis, vol. 1, Scuola Normale Superiore, Pisa, 1991, pp. 9-25.
A. Adimurthi and G. Mancini, Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math. 456 (1994), 1–18.
A. Adimurthi, G. Mancini and S.L. Yadava, The role of the mean curvature in semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations 20 (1995), no. 3–4, 591–631.
A. Adimurthi, F. Pacella and S.L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal. 113 (1993), no. 2, 318–350.
A. Adimurthi and S.L. Yadava, Existence and nonexistence of positive radial solutions of Neumann problems with critical Sobolev exponents, Arch. Rational Mech. Anal. 115 (1991), no. 3, 275–296.
A. Adimurthi and S.L. Yadava, On a conjecture of Lin–Ni for a semilinear Neumann problem, Trans. Amer. Math. Soc. 336 (1993), no. 2, 631–637.
A. Adimurthi and S.L. Yadava, Nonexistence of positive radial solutions of a quasilinear Neumann problem with a critical Sobolev exponent, Arch. Rational Mech. Anal. 139 (1997), no. 3, 239–253.
S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623–727.
A.I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems, J. Differential Equations 191 (2003), no. 2, 348–376.
D. Bonheure, E.M. dos Santos and H. Tavares, Hamiltonian elliptic systems: a guide to variational frameworks Port. Math. 71 (2014), no. 3–4, 301–395.
D. Bonheure, E. Serra and P. Tilli, Radial positive solutions of elliptic systems with Neumann boundary conditions, J. Funct. Anal. 265 (2013), no. 3, 375–398.
C. Budd, M.C. Knaap and L.A. Peletier, Asymptotic behavior of solutions of elliptic equations with critical exponents and Neumann boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), no. 3–4, 225–250.
M. Comte and M.C. Knaap, Existence of solutions of elliptic equations involving critical Sobolev exponents with Neumann boundary condition in general domains, Differential Integral Equations 4 (1991), no. 6, 1133–1146.
E. Constantin and N.H. Pavel, Green function of the Laplacian for the Neumann problem in Rn+ , Libertas Math. 30 (2010), 57–69.
E.N. Dancer and S. Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math. 189 (1999), no. 2, 241–262.
M. del Pino, P.L. Felmer and J. Wei, On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999), no. 1, 63–79.
M. del Pino, M. Musso and A. Pistoia, Super-critical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincaré C Anal. Non Linéaire 22 (2005), no. 1, 45–82.
O. Druet, F. Robert and J. Wei, The Lin–Ni’s Problem for Mean Convex Domains, Mem. Amer. Math. Soc., vol. 218, no. 1027, 2012, pp. vi+105.
R.L. Frank, S. Kim and A. Pistoia, Non-degeneracy for the critical Lane–Emden system, Proc. Amer. Math. Soc. 149 (2021), no. 1, 265–278.
M. Grossi, A class of solutions for the Neumann problem −∆u + λu = u(N +2)/(N −2) , Duke Math. J. 79 (1995), no. 2, 309–334.
M. Grossi, A. Pistoia and J. Wei, Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Calc. Var. Partial Differential Equations 11 (2000), no. 2, 143–175.
C. Gui and N. Ghoussoub, Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z. 229 (1998), no. 3, 443–474.
C. Gui and J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations 158 (1999), no. 1, 1–27.
Q. Guo and S. Peng, Sign-changing solutions to the slightly supercritical Lane–Emden system with Neumann boundary conditions, arXiv: 2306.00663 (2023).
Y. Guo, S. Wu and T. Yuan, Multiple boundary peak solution for critical elliptic system with Neumann boundary, J. Differential Equations 428 (2025), 59–112.
J. Hulshof and R.C.A.M. Van der Vorst, Asymptotic behaviour of ground states, Proc. Amer. Math. Soc. 124 (1996), no. 8, 2423–2431.
S. Kim and A. Pistoia, Multiple blowing-up solutions to critical elliptic systems in bounded domains, J. Funct. Anal. 281 (2021), no. 2, paper no. 109023, 58.
C.S. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem, Calculus of Variations and Partial Differential Equations (Trento, 1986), Lecture Notes in Math., vol. 1340, Springer, Berlin, 1988, pp. 160–174.
C.-S. Lin, W.-M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations 72 (1988), no. 1, 1–27.
F.-H. Lin, W.-M. Ni and J.-C. Wei, On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math. 60 (2007), no. 2, 252–281.
A.M. Micheletti and A. Pistoia, Generic properties of critical points of the boundary mean curvature, Topol. Methods Nonlinear Anal. 41 (2013), no. 2, 323–334.
W.-M. Ni, X. B. Pan and I. Takagi, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 (1992), no. 1, 1–20.
W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), no. 7, 819–851.
W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), no. 2, 247–281.
A. Pistoia and M. Ramos, Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions, J. Differential Equations 201 (2004), no. 1, 160–176.
A. Pistoia, A. Saldaña and H. Tavares, Existence of solutions to a slightly supercritical pure Neumann problem, SIAM J. Math. Anal. 55 (2023), no. 4, 3844–3887.
A. Pistoia, D. Schiera and H. Tavares, Existence of solutions on the critical hyperbola for a pure Lane–Emden system with Neumann boundary conditions, Int. Math. Res. Not. IMRN (2024), no. 1, 745–803.
M. Ramos and J. Yang, Spike-layered solutions for an elliptic system with Neumann boundary conditions, Trans. Amer. Math. Soc. 357 (2005), no. 8, 3265–3284.
O. Rey, Boundary effect for an elliptic Neumann problem with critical nonlinearity, Comm. Partial Differential Equations 22 (1997), no. 7–8, 1055–1139.
O. Rey, An elliptic Neumann problem with critical nonlinearity in three-dimensional domains, Commun. Contemp. Math. 1 (1999), no. 3, 405–449.
O. Rey and J. Wei, Blowing up solutions for an elliptic Neumann problem with subor supercritical nonlinearity II. N ≥ 4. Ann. Inst. H. Poincaré C Anal. Non Linéaire 22 (2005), no. 4, 459–484.
A. Saldaña, D. Schiera and H. Tavares, On least energy solutions to a pure Neumann Lane–Emden system: convergence, symmetry breaking, and multiplicity (2024), arxiv:2412.09512.
A. Saldaña and H. Tavares, Least energy nodal solutions of Hamiltonian elliptic systems with Neumann boundary conditions, J. Differential Equations 265 (2018), no. 12, 6127–6165.
L. Wang, J. Wei and S. Yan, A Neumann problem with critical exponent in nonconvex domains and Lin–Ni’s conjecture, Trans. Amer. Math. Soc. 362 (2010), no. 9, 4581–4615.
L. Wang, J. Wei and S. Yan, On Lin–Ni’s conjecture in convex domains, Proc. Lond. Math. Soc. (3) 102 (2011), no. 6, 1099–1126.
X.J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991), no. 2, 283–310.
Z.Q. Wang, The effect of the domain geometry on the number of positive solutions of Neumann problems with critical exponents, Differential Integral Equations 8 (1995), no. 6, 1533–1554.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Angela Pistoia, Delia Schiera

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0