Periodic solutions to non-autonomous predator-prey systems with multiple and time-dependent delays
DOI:
https://doi.org/10.12775/TMNA.2025.012Słowa kluczowe
Functional-differential equations with state-dependent arguments, non-autonomous systems, differential delay equation, periodic solutions, degree theoryAbstrakt
In this paper we establish the existence of at least one positive periodic solution for the following non-autonomous predator-prey systems of delay differential equations:\begin{align*} x'(t)&=\alpha(t)x(t-\tau_{11}(t))f(t,x(t-\tau_{12}(t)),y(t-\tau_{13}(t))),\\ y'(t)&=\beta(t)y(t-\tau_{21}(t))g(t,x(t-\tau_{22}(t)),y(t-\tau_{23}(t))). \end{align*} Our approach considers the coefficients and delays as periodic functions. We apply this approach to specific biological problems and derive sufficient conditions guaranteeing the existence of positive periodic solutions for each case of the system. It is noteworthy that, except for the periodicity of the delays, we do not impose any additional conditions on them.Bibliografia
U. an der Heiden, Periodic solutions of a nonlinear second order differential equation with delay, J. Math. Anal. App. 70 (1979), 599–609.
T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl. 254 (2001), 433-463.
R.E. Gaines and J.L. Mawhin, Coincidence Degree, and Non-linear Differential Equations, Springer, Berlin, 1977.
R. Hakl, P.J. Torres and M. Zamora, Periodic solutions of singular second order differential equations: Upper and lower functions, Nonlinear Anal. 74 (2011), 7078–7093.
J.K. Hale and A.F. Ivanov, On a high order differential delay equation, J. Math. Anal. App. 173 (1993), no. 2, 505–514.
H. Hai-Feng, Existence of positive periodic solutions of a neutral delay Lotka–Volterra system with impulses, Comput. Math. Appl. 48 (2004), 1833–1846.
Y. Li, On a periodic neutral delay Lotka–Volterra system, Nonlinear Anal. 39 (2000), 767–778.
J. Mallet-Paret and G.R. Sell, The Poincaré–Bendixson theorem for monotone cyclic feedback systems with delay, J. Differential Equations 125 (1996), 441–489.
J.L. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS Regional Conf. Ser. in Math., vol. 40, Amer. Math. Soc. Providence, RI, 1979.
S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays, Quart. Appl. Math. 59 (2001), 159–173.
R. Smith, Existence of periodic orbits of autonomous retarded functional differential equations, Math. Proc. Cambridge Philos. Soc. 88 (1980), no. 1, 89–109.
Y. Song, Y. Peng and J. Wei, Bifurcations for a predator-prey system with two delays, J. Math. Anal. Appl. 337 (2008), 466–479.
Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl. 301 (2005), 1–21.
P. Táboas, Periodic solutions of a planar delay equation, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), 85–101.
J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (1998), 4799–4838.
C. Xiao and D. Zengji Existence of positive periodic solutions for a neutral delay predatorprey model with Hassell-Varley type functional response and impulse, Qual. Theory Dyn. Syst. 17 (2018), 67–80.
L. Xiaowan and J. Shuguan, Existence of positive periodic solutions for a neutral impulsive predator-prey model with Crowley–Martin functional response, Proc. Amer. Math. Soc. 149 (2021), 4891–4906.
X.P. Yan and W. T. Li, Hopf bifurcation and global periodic solutions in a delayed predator-prey system, Appl. Math. Comput. 177 (2006), 427–445.
L. Zhenguo, L. Liping, L. Yang and Y. Zeng, Global positive periodic solutions for periodic two-species competitive systems with multiple delays and impulses, Abstr. Appl. Anal. (2014), Art. ID 785653, 23 pp.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Heli Elorreaga, Adrian Gomez, Nolbert Morales, Manuel Zamora

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0