Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Proper topological complexity
  • Strona domowa
  • /
  • Proper topological complexity
  1. Strona domowa /
  2. Archiwum /
  3. Vol 66, No 1 (September 2025) /
  4. Articles

Proper topological complexity

Autor

  • José Manuel García-Calcines https://orcid.org/0000-0002-8969-6694
  • Aniceto Murillo https://orcid.org/0000-0002-2681-274X

DOI:

https://doi.org/10.12775/TMNA.2025.010

Słowa kluczowe

Proper homotopy, exterior homotopy, proper Lusternik-Schnirelmann category, proper topological complexity

Abstrakt

We introduce and study the proper topological complexity of a given configuration space, a version of the classical invariant for which we require that the algorithm controlling the motion is able to avoid any possible choice of ``unsafe'' area. To make it a homotopy functorial invariant we characterize it as a particular instance of the exterior sectional category of an exterior map, an invariant of the exterior homotopy category which is also deeply analyzed.

Bibliografia

R. Ayala, E. Domı́nguez, A. Márquez and A. Quintero, Lusternik–Schnirelmann invariants in proper homotopy theory, Pacific Journal of Math. 153 (1992), 201–215.

Z. Blaszczyk and J. Carrasquel-Vera, Topological complexity and efficiency of motion planning algorithms, Rev. Mat. Iberoam. 34 (2018), 1679–1684.

M. Cárdenas, F.F. Lasheras, F. Muro and A. Quintero, Proper L-S category, fundamental pro-groups and 2-dimensional proper co-H-spaces, Topology Appl. 153 (2005), 580–604.

M. Cárdenas, F.F. Lasheras and A. Quintero, Minimal covers of open manifolds with half-spaces and the proper L-S category of product spaces, Bull. Belgian Math. Soc. 9 (2002), 419–431.

H. Colman and M. Grant. Equivariant topological complexity, Algebr. Geom. Topol. 12 (2012), 2299–2316.

O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik–Schnirelmann Category, Math. Surveys Monogr., vol. 103, AMS, 2003.

A. Dranishnikov, On topological complexity of twisted products, Topology Appl. 179 (2015), 74–80.

A. Dranishnikov, Topological complexity of wedges and covering maps, Proc. Amer. Math. Soc. 142 (2014), 4365–4376.

M. Farber, Topological complexity of motion planning, Discret. Comput. Geom. 29 (2003), 211–221.

M. Farber, Invitation to Topological Robotics, Zurich Lectures in Advanced Mathematics, European Mathematical Society, 2008.

M. Farber and M. Grant, Symmetric motion planning, Topology and Robotics, Contemp. Math. 438 (2007), 85–104.

J.M. Garcı́a-Calcines, A remark on proper partitions of unity, Topology Appl. 159 (2012), 3363–3371.

J.M. Garcı́a-Calcines, P.R. Garcı́a-Dı́az and A. Murillo, A Whitehead–Ganea approach for proper Lusternik–Schnirelmann category, Math. Proc. Camb. Phil. Soc. 142 (2007), 439–457.

J.M. Garcı́a-Calcines, P.R. Garcı́a-Dı́az and A. Murillo, The Ganea conjecture in proper homotopy via exterior homotopy theory, Math. Proc. Cambridge Phil. Soc. 149 (2010) 75–91.

J.M. Garcı́a-Calcines, P.R. Garcı́a-Dı́az and A. Murillo, Brown representability for exterior cohomology and cohomology with compact supports, J. London Math. Soc. 90 (2014), 184–196.

J.M. Garcı́a-Calcines, M. Garcı́a-Pinillos and L.J. Hernández-Paricio, A closed model category for proper homotopy and shape theories, Bull. Austral. Math. Soc. 57 (1998), 221–242.

W. Lubawski and W. Marzantowicz, Invariant topological complexity, Bull. London Math. Soc. 47 (2014), 101–117.

M. Mihalik, Semistability at the end of a group extension, Trans. Amer. Math. Soc. 277 (1983), 307–321.

T. Napier and M. Ramachandran, Elementary construction of exhausting subsolutions of elliptic operators, Enseign. Math. 3 (2004), 367–390.

I. Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259–269.

R. Short, Relative topological complexity of a pair, Topology Appl. 248 (2018), 7–23.

E.H. Spanier, Cohomology with supports, Pacific J. Math. 123 (1986), 447–464.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2025-10-01

Jak cytować

1.
GARCÍA-CALCINES, José Manuel & MURILLO, Aniceto. Proper topological complexity. Topological Methods in Nonlinear Analysis [online]. 1 październik 2025, T. 66, nr 1, s. 289–313. [udostępniono 12.12.2025]. DOI 10.12775/TMNA.2025.010.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 66, No 1 (September 2025)

Dział

Articles

Licencja

Prawa autorskie (c) 2025 José Manuel García-Calcines, Aniceto Murillo

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa