Characterizations of distality via weak equicontinuity on compact Hausdorff spaces
DOI:
https://doi.org/10.12775/TMNA.2025.006Słowa kluczowe
Distality, equicontinuity, sensitivity, IP-set, central-set, compact Hausdorff spaceAbstrakt
For an infinite discrete group $G$ acting on a compact Hausdorff space $X$, we characterize distality via weak equicontinuity introduced by Li and Yang. In other words, we show that if a minimal system $(X,G)$ admits an invariant measure then $(X,G)$ is distal if and only if it is pairwise IP$^*$-equicontinuous; if the product system $(X\times X,G)$ of a minimal system $(X,G)$ has a dense set of minimal points and $G$ is countable, then $(X,G)$ is distal if and only if it is pairwise IP$^*$-equicontinuous if and only if it is pairwise central$^*$-equicontinuous. This is a generalization of compact metric space of Li and Yang (Discrete Contin. Dyn. Syst. {\bf 44} (2024), no. 1, 61-77, DOI: 10.3934/dcds.2023096). Moreover, we provide a counterexample to illustrate that the dichotomy theorem for minimal systems regarding almost pairwise IP$^*$-equicontinuity does not hold in the non-metrizable case.Bibliografia
E. Akin, Recurrence in Topological Dynamics, Furstenberg Families and Ellis Actions, The University Series in Mathematics, Plenum Press, New York, 1997.
J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988.
K. Cao and X. Dai, Lifting the regionally proximal relation and characterizations of distal extensions, Discrete Contin. Dyn. Syst. 42 (2022), no. 5, 2103–2174.
J. Auslander, F. Hahn and L. Markus, Topological dynamics on nilmanifolds, Bull. Amer. Math. Soc. 67 (1961), 289–299.
J. Clay, Variations on equicontinuity, Duke Math. J. 30 (1963), 423–431.
X. Dai, H. Liang and Z. Xiao, Characterizations of relativized distal points of topological dynamical systems, Topology Appl. 302 (2021), paper no. 107832, 2 pp.
X. Dai, On sncc-inheritance of pointwise almost periodicity in flows, Topology Proc. 64 (2024), 251–268.
J. de Vries, Elements of Topological Dynamics, Kluwer Academic Publishers, Dordrecht, 1993.
D.B. Ellis, R. Ellis and M. Nerurkar, The topological dynamics of semigroup actions, Trans. Amer. Math. Soc. 353 (2001), 1279–1320.
R. Ellis, S. Glasner and L. Shapiro, Proximal-isometric flows, Adv. Math. 17 (1975), 213–260.
R R. Ellis and W.H. Gottschalk, Homomorphisms of transformation groups, Trans. Amer. Math. Soc. 94 (1960), 258–271.
H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963), 477–515. [13] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, M.B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981.
S. Glasner, Proximal Flows, Lecture Notes in Mathematics, vol. 517, Springer–Verlag, Berlin,New York, 1976.
W.H. Gottschalk, Minimal sets: an introduction to topological dynamics, Bull. Amer. Math. Soc. 64 (1958), 336–351.
N. Hindman and D. Strauss, Algebra in the Stone–Čech compactification, De Gruyter Textbook, Walter de Gruyter & Co., Berlin, 2012.
J. Li, Dynamical characterization of C-sets and its application, Fund. Math. 216 (2012), 259–286.
J. Li and Y. Yang, Stronger versions of sensitivity for minimal group actions, Acta Math. Sin. (Engl. Ser.) 37 (2021), 1933–1946
J. Li and Y. Yang, On n-tuplewise IP-sensitivity and thick sensitivity, Discrete Contin. Dyn. Syst. 42 (2022), 2775–2793.
J. Li and Y. Yang, Characterizations of distality via weak equicontinuity, Discrete Contin. Dyn. Syst. 44 (2024), no. 1, 61–77.
D.C. Mcmahon and T.S. Wu, On weak mixing and local almost periodicity, Duke Math. J. 39 (1972), 333–343.
W.A. Veech, Topological systems, Bull. Amer. Math. Soc. 83 (1977), 775–830.
X. Ye and T. Yu, Sensitivity, proximal extension and higher order almost automorphy, Trans. Amer. Math. Soc. 370 (2018), 3639–3662.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Zhuowei Liu

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0