Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Minimizing travelling waves for the one-dimensional nonlinear Schrödinger equations with non-zero condition at infinity
  • Strona domowa
  • /
  • Minimizing travelling waves for the one-dimensional nonlinear Schrödinger equations with non-zero condition at infinity
  1. Strona domowa /
  2. Archiwum /
  3. Vol 66, No 1 (September 2025) /
  4. Articles

Minimizing travelling waves for the one-dimensional nonlinear Schrödinger equations with non-zero condition at infinity

Autor

  • Jordan Berthoumieu

DOI:

https://doi.org/10.12775/TMNA.2024.059

Słowa kluczowe

Schrödinger equation, travelling waves, variational argument, orbital stability

Abstrakt

This paper deals with the existence of travelling wave solutions for a general one-dimensional nonlinear Schrödinger equation. We construct these solutions by minimizing the energy under the constraint of fixed momentum. We also prove that the family of minimizers is stable. Our method is based on recent articles about the orbital stability for the classical and nonlocal Gross-Pitaevski{\u\i} equations \cite{BetGrSa2}, \cite{deLaMen1}. It relies on a concentration-compactness theorem, which provides some compactness for the minimizing sequences and thus the convergence (up to a subsequence) towards a travelling wave solution.

Bibliografia

M. Abid, C. Huepe, S. Metens, C. Nore, C.T. Pham, L.S. Tuckerman and M.E.Brachet, Gross–Pitaevskiı̆ dynamics of Bose–Einstein condensates and superfluid turbulence, Fluid Dynamics Research 33 (2003), no. 5–6, 509–544.

J. Bellazzini and D. Ruiz, Finite energy traveling waves for the Gross–Pitaevskiı̆ equation in the subsonic regime, Amer. J. Math. (2021), in press.

H. Berestycki and P.-L. Lions, Nonlinear scalar fields equations I, Arch. Rational Mech. Anal. 82 (1983), 313–345.

F. Bethuel, P. Gravejat and J.-C. Saut, Existence and properties of travelling waves for the Gross–Pitaevskiı̆ equation, Stationary and Time Dependent Gross–Pitaevskiı̆ equations (A. Farina and J.-C. Saut, eds.), Contemp. Math., vol. 473, Amer. Math. Soc., Providence, RI, 2008, pp. 55–104.

F. Bethuel, P. Gravejat and J.-C. Saut, Travelling waves for the Gross–Pitaevskiı̆ equation II, Comm. Math. Phys. 285 (2009), 567–651.

F. Bethuel, P. Gravejat, J.-C. Saut and D. Smets, Orbital stability of the black soliton for the Gross–Pitaevskiı̆ equation, Indiana Univ. Math. J. 57 (2008), 2611–2642.

F. Bethuel, P. Gravejat, J.-C. Saut and D. Smets, On the Korteweg–de Vries longwave approximation of the Gross–Pitaevskiı̆ equation I, Int. Math. Res. Not. 2009 (2009), 2700–2748.

F. Bethuel, P. Gravejat, J.-C. Saut and D. Smets, On the Korteweg–de Vries longwave approximation of the Gross–Pitaevskiı̆ equation II, Commun. Partial Differential Equations 35 (2010), 113–164.

F. Bethuel, G. Orlandi and D. Smets, Vortex rings for the Gross–Pitaevskiı̆ equation, J. Eur. Math. Soc. 6 (2004), 17–94.

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger Comm. Math. Phys. 85 (1982), no. 4, 549–561.

D. Chiron, Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one, Nonlinearity 25 (2012), 813–850.

D. Chiron, Stability and instability for subsonic traveling waves of the nonlinear Schrödinger equation in dimension one, Anal. Partial Differential Equations 6 (2013), 1327–1420.

D. Chiron, Error bounds for the (KdV)/(KP-I) and the (gKdV)/(gKP-I) asymptotic regime for nonlinear Schrödinger type equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 1175–1230.

D. Chiron and M. Maris, Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, Arch. Ration. Mech. Anal. 226 (2017), 143–242.

D. Chiron and F. Rousset, The KdV/KP-I limit of the nonlinear Schrödinger equation, SIAM J. Math. Anal. 42 (2010), 64–96.

C. Coste, Nonlinear Schrödinger equation and superfluid hydrodynamics, Eur. Phys. J. B 1 (1998), 245–253.

A. de Laire and P. Mennuni, Traveling waves for some nonlocal 1D Gross–Pitaevskiı̆ equations with nonzero conditions at infinity, Discrete Contin. Dyn. Syst. 40 (2020), 635–682.

C. Gallo, Schrödinger group on Zhidkov spaces Adv. Differential Equations 9 (2004), no. 5–6, 509–538.

C. Gallo, The Cauchy problem for defocusing nonlinear Schrödinger equations with nonvanishing initial data at infinity, Commun. Partial Differential Equations 33 (2008), no. 5, 729–771.

P. Gérard, The Cauchy problem for the Gross–Pitaevskiı̆ equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 765–779.

V.L. Ginzburg and L.P. Pitaevskiı̆, On the theory of superfluidity, Sov. Phys. JETP 34 (1958), 1240.

M. Grillakis, J. Shatah and W.A. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987), 160–197.

E.P. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys. 4 (1963), no. 2, 195–207.

R. Killip, T. Oh, O. Pocovnicu and M. Visan, Global well-posedness of the Gross–Pitaevskiı̆ and cubic-quintic nonlinear Schrödinger equations with non-vanishing boundary conditions, Math. Res. Lett. 19 (2012),969–986.

Y.S. Kivshar and B. Luther-Davies, Dark optical solitons: physics and applications, Phys. Rep. 298 (1998), no. 2–3, 81–197.

Z. Lin, Stability and instability of traveling solitonic bubbles, Adv. Differential Equations 7 (2002), no. 8, 897–918.

P.-L. Lions, The concentration-compactness principle in the calculus of variations, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109–145.

M. Maris, Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with non-zero conditions at infinity, SIAM J. Math. Anal. 40 (2008), 1076–1103.

M. Maris, Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, Ann. of Math. 178 (2013), 107–182.

L.P. Pitaevskiı̆, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13 (1961), no. 2, 451–454.

V.E. Zakharov and E.A. Kuznetsov, Multi-scales expansion in the theory of systems integrable by the inverse scattering transform, Phys. D 18 (1986), no. 1–3, 455–463.

P.E. Zhidkov, Korteweg–De Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Mathematics, vol. 1756, Springer–Verlag, Berlin, 2001.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2025-10-01

Jak cytować

1.
BERTHOUMIEU, Jordan. Minimizing travelling waves for the one-dimensional nonlinear Schrödinger equations with non-zero condition at infinity. Topological Methods in Nonlinear Analysis [online]. 1 październik 2025, T. 66, nr 1, s. 337–386. [udostępniono 12.12.2025]. DOI 10.12775/TMNA.2024.059.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 66, No 1 (September 2025)

Dział

Articles

Licencja

Prawa autorskie (c) 2025 Jordan Berthoumieu

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa