On the degenerate Arnold conjecture on T^{2m} x CP^n
DOI:
https://doi.org/10.12775/TMNA.2025.011Słowa kluczowe
Arnold conjecture, Conley indexAbstrakt
In the 1960s Arnold conjectured that a Hamiltonian diffeomorphism of a closed connected symplectic manifold $(M,\omega)$ should have at least as many contractible fixed points as a smooth function on $M$ has critical points. Such a conjecture can be seen as a natural generalization of Poincaré's last geometric theorem and represents one of the most famous problems in symplectic geometry — still open today in its full generality. In this paper, we build on a recent approach of the authors and Izydorek to the Arnold conjecture on $\mathbb C\mathbb P^n$ to show that the (degenerate) Arnold conjecture holds for Hamiltonian diffeomorphisms $\phi$ of $\T^{2m}\times \mathbb C\mathbb P^n$, $m,n\geq 1$, which are $C^0$-close to the identity in the $\mathbb C \mathbb P^n$-direction, namely that any such $\phi$ has at least $\text{CL}\big(\T^{2m}\times \mathbb C\mathbb P^n\big)+1= 2m+n+1$ contractible fixed points.Bibliografia
L. Asselle, M. Izydorek and M. Starostka, The Arnold conjecture on CPn and the Conley index, Discrete Contin. Dyn. Syst. Ser. B 28 (2023), issue 4, DOI: 10.3934/dcdsb.2022184.
C. Conley, Isolated Invariant Sets and the Morse Index, CMBS Reg. Conf. Ser. Math. no. 38, Amer. Math. Soc., 1978.
C. Conley and E. Zehnder, The Birkhoff–Lewis fixed point theorem and a conjecture of V.I. Arnold, Invent. Math. 73 (1983), 33–49.
O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik–Schnirelmann Category, Amer. Math. Soc., 2003.
Z. Dzedzej, K. Gȩba and W. Uss, The Conley index, cup-length and bifurcation, J. Fixed Point Theory Appl. 10 (2011), no. 2, 233–252.
A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), 513–547.
A. Floer, Symplectic fixed points and holomorphic spheres, Commun. Math. Phys. 120 (1989), 575–611.
B. Fortune, A symplectic fixed point theorem for CPn , Invent. Math. 81 (1985), no. 1, 29–46.
K. Fukaya and K. Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999), no. 5, 933–1048.
K. Fukaya and K. Ono, Arnold conjecture and Gromov–Witten invariant for general symplectic manifolds, The Arnoldfest. Proceedings of a conference in honour of V.I. Arnold for his 60th birthday, Toronto, Canada, June 15–21 (1997), (E. Bierstone et al., eds), vol. 24, 1999.
K. Gȩba, M. Izydorek and A. Pruszko, The Conley index in Hilbert spaces and its applications, Studia Math. 134 (1999), no. 3, 217–233.
H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994.
M. Izydorek, A cohomological Conley index in Hilbert spaces and applications to strongly indefinite problems, J. Differential Equations 170 (2001), no. 1, 22–50.
G. Liu and G. Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998), no. 1, 1–74.
Y-G. Oh, A symplectic fixed point theorem on T2n × CPk , Math. Z. 203 (1990), no. 1, 535–552.
T.O. Rot, M. Starostka and N. Waterstraat, The relative cup-length in local Morse cohomology, Topol. Methods Nonlinear Anal. 64 (2024), no. 1, 15–29.
Yu.B. Rudyak and J. Oprea, On the Lusternik–Schnirelmann category of symplectic manifolds and the Arnold conjecture, Math. Z. 230 (1999), no. 4, 673–678.
M. Starostka and N. Waterstraat, The E-Cohomological Conley index, cup-lengths and the Arnold conjecture on T2n , Adv. Nonlinear Stud. 19 (2019), no. 3, 519–528, DOI: 10.1515/ans-2019-2044.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0