Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Characterizing Lipschitz images of injective metric spaces
  • Strona domowa
  • /
  • Characterizing Lipschitz images of injective metric spaces
  1. Strona domowa /
  2. Archiwum /
  3. Online First Articles /
  4. Articles

Characterizing Lipschitz images of injective metric spaces

Autor

  • Taras Banakh https://orcid.org/0000-0001-6710-4611
  • Judyta Bąk https://orcid.org/0000-0001-8027-7226
  • Joanna Garbulińska-Węgrzyn https://orcid.org/0000-0001-7217-2002
  • Magdalena Nowak https://orcid.org/0000-0003-1915-0001
  • Michał Popławski https://orcid.org/0000-0002-2725-9675

DOI:

https://doi.org/10.12775/TMNA.2024.058

Słowa kluczowe

Injective metric space, Lipschitz map, Lipschitz image, Urysohn metric space, Lipschitz connected metric space

Abstrakt

A metric space $X$ is {\em injective} if every non-expanding map $f \colon B\to X$ defined on a subspace $B$ of a metric space $A$ can be extended to a non-expanding map $\overline f \colon A\to X$. We prove that a metric space $X$ is a Lipschitz image of an injective metric space if and only if $X$ is {\em Lipschitz connected} in the sense that for every points $x,y\in X$, there exists a Lipschitz map $f \colon [0,1]\to X$ such that $f(0)=x$ and $f(1)=y$. In this case the metric space $X$ carries a well-defined intrinsic metric. A metric space $X$ is a Lipschitz image of a compact injective metric space if and only if $X$ is compact, Lipschitz connected and its intrinsic metric is totally bounded. A metric space $X$ is a Lipschitz image of a separable injective metric space if and only if $X$ is a Lipschitz image of the Urysohn universal metric space if and only if $X$ is analytic, Lipschitz connected and its intrinsic metric is separable.

Bibliografia

N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), no. 3, 405–439.

D. Baboolal and P. Pillay, Some remarks on rectifiably connected metric spaces, Topology Appl. 251 (2019), 107–124.

T. Banakh and F. Strobin, Embedding topological fractals in universal spaces, J. Fractal Geom. 2 (2015), no. 4, 377–388.

Y. Beniamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, American Mathematical Society Colloquium Publications, vol. 48, 2000.

S.A. Bogatyi, Compact homogeneity of Uryson’s universal metric space, Russ. Math. Surv. 55 (2000), no. 2, 332–333.

B.H. Bowditch, Median and injective metric spaces, Math. Proc. Cambridge Philos. Soc. 168 (2020), no. 1, 43–55.

H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.

I. Chiswell, Introduction to Λ-trees, World Scientific Publishing Co. Pte. Ltd., 2001.

S. Eilenberg and O.G. Harrold, Jr., Continua of finite linear measure, Amer. J. Math. 65 (1943), 137–146.

R. Engelking, General Topology, Helderman Verlag Berlin, Sigma Series in Pure Mathematics, vol. 6, 1989.

M. Espinola and M.A. Khamsi, Introduction to hyperconvex spaces, Handbook of Metric Fixed Point Theory, (W.A. Kirk and B. Sims, eds), Springer, Dordrecht, DOI:10.1007/978-94-017-1748-9_13.

K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.

H. Gluck, Instrinsic metrics, Amer. Math. Mon. 73 (1966), no. 9, 937–950.

H. Hahn, Mengentheoretische charakterisierung der stetigen kurven, Sitzungsber. Akad. Wiss. Wien 123 (1914), 2433–2489.

G.E. Huhunaišvili, On a property of Uryson’s universal metric space, Soviet Math. Dokl. 101 (1955), 607–610.

A. Kechris, Classical Descriptive Set Theory, Springer, 1995.

W. Kirk, Hyperconvexity of R-trees, Fund. Math. 156 (1998), 67–72.

W. Kubiś, Injective objects and retracts of Fraïssé limits, Forum Math. 27 (2015), no. 2, 807–842.

W. Kubiś and M. Rubin, Extension theorems and reconstruction theorems for the Urysohn universal space, Czechoslovak Math. J. 60 (135) (2010), no. 1, 1–29.

S. Mazurkiewicz, Sur les lignes de Jordan, Fund. Math. 1 (1920), 166–209.

J. Melleray, On the geometry of Urysohn’s universal metric space, Topology Appl. 154 (2007), no. 2, 384–403.

M.E. Rudin, Nikiel’s conjecture, Topology Appl. 116 (2001), no. 3, 305–331.

P. S. Urysohn, Sur un espace métrique iuniversel, Bull. Sci. Math 51 (1927), 43–64, 74–96.

T. Ważewski, Kontinua prostowalne w zwiazku z funkcjami i odwzorowaniami absolutnie ciągłymi, Annales de la Société Polonaise de Mathématique, supplement (1927), 9–49.

Online First Articles

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2025-06-14

Jak cytować

1.
BANAKH, Taras, BĄK, Judyta, GARBULIŃSKA-WĘGRZYN, Joanna, NOWAK, Magdalena & POPŁAWSKI, Michał. Characterizing Lipschitz images of injective metric spaces. Topological Methods in Nonlinear Analysis [online]. 14 czerwiec 2025, s. 1–22. [udostępniono 6.7.2025]. DOI 10.12775/TMNA.2024.058.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Online First Articles

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa