Concentrating solutions for a class of indefinite Schrödinger-Poisson systems with doubly critical growth
DOI:
https://doi.org/10.12775/TMNA.2024.055Słowa kluczowe
Schrödinger-Poisson system, critical nonlocal term, indefinite variational problem, linking, modified Pankov-Nehari manifold, concentratingAbstrakt
We study the following Schrödinger-Poisson system involving critical nonlocal term with indefinite steep potential well $$ \begin{cases} -\Delta u+(\lambda V(x)-\mu)u-\phi |u|^3u= f(u), & x\in\R^3, \\ -\Delta \phi= |u|^5, & x\in\R^3, \end{cases} $$% where $\lambda> 0$ is a parameter, $V\in \mathcal{C}\big(\R^3,\R^+\big)$ admits a potential well $\Omega \triangleq\text{int}V^{-1}(0)$, and $\mu> \mu_1$ is a constant such that the operator $L_\lambda \triangleq -\Delta + \lambda V-\mu$ is non-degenerate when $\lambda$ is large enough with $\{\mu_j\}_{j=1}^\infty$ denoting the Dirichlet eigenvalues of $\big(-\Delta,H_0^1(\Omega)\big)$. If $f$ satisfies some suitable assumptions involving critical growth, with the help of a linking-type result involving the modified Pankov-Nehari manifold procedure, we establish the existence and concentrating behavior of positive solutions for the given system using variational methods.Bibliografia
C.O. Alves and G.F. Germano, Ground state solution for a class of indefinite variational problems with critical growth, J. Differential Equations 265 (2018), 444–437.
A. Azzollini and P. d’Avenia, On a system involving a critically growing nonlinearity, J. Math. Anal. Appl. 387 (2012), 433–438.
A. Azzollini, P. d’Avenia, V. Luisi, Generalized Schrödinger-Poisson type systems, Commun. Pure Appl. Anal., 12 (2013), 867–879.
A. Azzollini, P. d’Avenia and G. Vaira, Generalized Schrödinger–Newton system in dimension N ≥ 3: Critical case, J. Math. Anal. Appl. 449 (2017), 531–552.
T. Bartsch and Y. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory, Math. Nachr. 279 (2006), 1267–1288.
T. Bartsch, A. Pankov and Z.-Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math. 3 (2001), 549–569.
T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for superlinear elliptic problems on RN , Commun. Partial Differential Equations 20 (1995), 1725–1741.
T. Bartsch and Z.-Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys. 51 (2000), 366–384.
J. Bellazzini and L. Jeanjean, On dipolar quantum gases in the unstable regime, SIAM J. Math. Anal. 48 (2017), 2028–2058.
V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods. Nonlinear Anal. 11 (1998), 283–293.
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math. 36 (1983), 437–477.
R. Carles, P. Markowich and C. Sparber, On the Gross–Pitaevskiı̆ equation for trapped dipolar quantum gases, Nonlinearity 21 (2008), 2569–2590.
J. Chabrowski and A. Szulkin, On a semilinear Schrödinger equation with critical Sobolev exponent, Proc. Amer. Math. Soc. 130 (2001), 85–93.
M. Clapp and Y. Ding, Positive solutions of a Schrödinger equation with critical nonlinearity, Z. Angew. Math. Phys. 55 (2004), 592–605.
T. d’Aprile and D. Mugnai, Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 893–906.
T. d’Aprile and D. Mugnai, Non-existence results for the coupled Klein–Gordon–Maxwell equations, Adv. Nonlinear Stud. 4 (2004), 307–322.
M. Dong and G. Lu, Best constants and existence of maximizers for weighted Trudinger–Moser inequalities, Calc. Var. Partical Differential Equations 55 (2016), 88.
X. Feng, Ground state solution for a class of Schrödinger–Poisson-type systems with partial potential, Z. Angew. Math. Phys. 71 (2020), 37.
X. Feng, Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems, Z. Angew. Math. Phys. 71 (2020), 157.
L. Huang, E. Rocha and J. Chen, Two positive solutions of a class of Schrödinger–Poisson system with indefinite nonlinearity, J. Differential Equations 255 (2013), 2463–2483.
L. Jeanjean, On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem set on RN , Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), 787–809.
L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations 11 (2006), 813–840.
Y. Jiang and H. Zhou, Schrödinger–Poisson system with steep potential well, J. Differential Equations 251 (2011), 582–608.
W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations 3 (1998), 441–472.
C. Lei and G. Liu, Multiple positive solutions for a Schrödinger–Newton system with sign-changing potential, Comput. Math. Appl. 77 (2019), 631–640.
F. Li, Y. Li and J. Shi, Existence of positive solutions to Schrödinger–Poisson type systems with critical exponent, Commun. Contemp. Math. 10 (2014), 1450036.
F. Li, Y. Li and J. Shi, Existence and multiplicity of positive solutions to Schrödinger–Poisson type systems with critical nonlocal term, Calc. Var. Partial Differential Equations 56 (2017), paper no. 134.
G. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math. 4 (2002), 763–776.
Y.Y. Li, G.D. Li and C.L. Tang, Existence and concentration of ground state solutions for Choquard equations involving critical growth and steep potential well, Nonlinear Anal. 200 (2020), 111997.
E.H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997.
P.-L. Lions, Solutions of Hartree–Fock equations for Coulomb systems, Commun. Math. Phys. 109 (1987), 33–97.
H. Liu, Positive solutions of an asymptotically periodic Schrödinger–Poisson system with critical exponent, Nonlinear Anal. 32 (2016), 198–212.
J. Mederski, Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Comm. Partial Differential Equations 41 (2016), 1426–1440.
J. Mederski, J. Schino and A. Szulkin, Multiple solutions to a nonlinear curl-curl problem in R3 , Arch. Rational Mech. Anal. 236 (2020), 253–288.
M. Niu, Z. Tang and L. Wang, Least energy solutions for indefinite biharmonic problems via modified Nehari-Pankov manifold, Commun. Contemp. Math. 20 (2018), 1750047.
A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math. 73 (2005), 259–287.
A. Pomponio, L. Shen, X. Zeng and Y. Zhang, Generalized Chern–Simons–Schrödinger system with sign-changing steep potential well: critical and subcritical exponential case, J. Geom. Anal. 33 (2023), no. 6, paper no. 185, 34 pp.
D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006), 655–674.
L. Shen and M. Squassina, Planar Schrödinger–Poisson system with steep potential well: supercritical exponential case, arXiv:2401.10663.
L. Shen, M. Squassina and X. Zeng, Infinitely many solutions for a class of fractional Schrödinger equations coupled with neutral scalar field, Discrete Contin. Dyn. Syst. S (2024), DOI: 10.3934/dcdss.2024084.
J. Sun and S. Ma, Ground state solutions for some Schrödinger–Poisson systems with periodic potentials, J. Differential Equations 260 (2016), 2119–2149.
A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal. 257 (2009), 3802–3822.
Z. Tang, Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials, Commun. Pure Appl. Anal. 13 (2014), 237–248.
Z. Wang and H. Zhou, Sign-changing solutions for the nonlinear Schrödinger–Poisson system in R3 , Calc. Var. Partial Differential Equations 52 (2015), 927–943.
M. Willem and W. Zou, On a Schrödinger equation with periodic potential and spectrum point zero, Indiana Univ. Math. J. 52 (2003), 109–132.
J. Zhang and W. Zou, Existence and concentrate behavior of Schrödinger equations with critical exponential growth in RN , Topol. Methods Nonlinear Anal. 48 (2016), 345–370.
L. Zhao, H. Liu and F. Zhao, Existence and concentration of solutions for Schrödinger–Poisson equations with steep well potential, J. Differential Equations 255 (2013), 1–23.
Y. Zhou, J. Lei, Y. Wang and Z. Xiong, Positive solutions of a Kirchhoff–Schrödinger–Newton system with critical nonlocal term, Electron. J. Qual. Theory Differ. Equ. (2022), paper no. 50, 12 pp.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Liejun Shen, Marco Squassina

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0