Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Structure of the set of fixed points of uniformly Lipschitzian semigroups in CAT(0) spaces
  • Home
  • /
  • Structure of the set of fixed points of uniformly Lipschitzian semigroups in CAT(0) spaces
  1. Home /
  2. Archives /
  3. Vol 65, No 2 (June 2025) /
  4. Articles

Structure of the set of fixed points of uniformly Lipschitzian semigroups in CAT(0) spaces

Authors

  • Rafael Espínola García https://orcid.org/0000-0001-7524-653X
  • Aleksandra Huczek https://orcid.org/0000-0003-4222-083X

DOI:

https://doi.org/10.12775/TMNA.2024.050

Keywords

Fixed points, semigroups of mappings, Lipschitz mappings, CAT(0) space

Abstract

Fixed points for semigroups of $k$-Lipschitz mappings have been recently studied under the considerations that the semigroup satisfies a mild amenability condition or that it is left reversible. Both approaches have brought positive results on existence of fixed points and structure of the set of fixed points. In the case of the amenable condition, results have been obtained for Hilbert spaces; in the case of left reversible semigroups, results were first obtained for Hilbert spaces and then extended to $p$-uniformly convex spaces. In this work, we address both approaches in the non linear context of complete CAT(0) spaces, providing counterparts of the most relevant results for each one of them.

References

M.R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Springer–Verlag, Berlin, 1999.

R.E. Bruck, Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251–262.

D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Math., vol. 33, Amer. Math. Soc., Providence, RI, 2001.

R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1963), 1139–1141.

M.M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544.

S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal. 65 (2006), 762–772.

D.J. Downing and W.O. Ray, Uniformly Lipschitzian semigroups in Hilbert space, Canad. Math. Bull. 25 (1982), 210–214.

K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.

K. Goebel and W.A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 47 (1973), 135–140.

J. Górnicki, Remarks on the structure of the fixed-point sets of uniformly Lipschitzian mappings in uniformly convex Banach spaces, J. Math. Anal. Appl. 355 (2009), 303–310.

J. Górnicki, The structure of fixed-point sets of uniformly Lipschitzian semigroups, Collect. Math. 63 (2012), 333–344.

R.D. Gray and M. Kambites, Amenability and geometry of semigroups, Trans. Amer. Math. Soc. 369 (2017), 8087–8103.

R.D. Holmes and A.T. Lau, Nonexpansive actions of topological semigroups and fixed points, J. Lond. Math. Soc. 2 (1972), no. 2, 330–336.

H. Ishihara and W. Takahashi, Fixed point theorems for uniformly Lipschitzian semigroups in Hilbert spaces, J. Math. Anal. Appl. 127 (1987), 206–210.

M. Kell, Uniformly convex metric spaces, Anal. Geom. Metr. Spaces 2 (2014), 359–380.

A. T.-M. Lau, Semigroup of nonexpansive mappings on a Hilbert space, J. Math. Anal. Appl. 105 (1985), 514–522.

E.A. Lifschitz, Fixed point theorems for operators in strongly convex spaces, Voronez Gos. Univ. Trudy Mat. Fak. 16 (1975), 23–28. (Russian)

T. Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630–641.

A.L.T. Paterson, Weak containment and Clifford semigroups, Proc. Royal Soc. Edinburgh 81A (1978), 23–30.

V. Pérez Garcı́a and H. Fetter Nathansky, Fixed points of periodic mappings in Hilbert spaces, Ann. Univ. Mariae Curie-Sklodowska Sec. A 64 (2010), 37–48.

E. Sȩdlak and A. Wiśnicki, On the structure of fixed-point sets of uniformly Lipschitzian mappings, Topol. Methods Nonlinear Anal. 30 (2007), 345–350.

A. Wiśnicki, Hölder continuous retractions and amenable semigroups of uniformly Lipschitzian mappings in Hilbert spaces, Topol. Methods Nonlinear Anal. 43 (2014), 89–96.

H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127–1138.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-06-14

How to Cite

1.
GARCÍA, Rafael Espínola and HUCZEK, Aleksandra. Structure of the set of fixed points of uniformly Lipschitzian semigroups in CAT(0) spaces. Topological Methods in Nonlinear Analysis. Online. 14 June 2025. Vol. 65, no. 2, pp. 563 - 576. [Accessed 8 December 2025]. DOI 10.12775/TMNA.2024.050.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 65, No 2 (June 2025)

Section

Articles

License

Copyright (c) 2025 Rafael Espínola García, Aleksandra Huczek

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop