Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On multipolynomial extensions of Kahae-Salem-Zygmund inequality and applications
  • Strona domowa
  • /
  • On multipolynomial extensions of Kahae-Salem-Zygmund inequality and applications
  1. Strona domowa /
  2. Archiwum /
  3. Online First Articles /
  4. Articles

On multipolynomial extensions of Kahae-Salem-Zygmund inequality and applications

Autor

  • Nacib Gurgel Albuquerque https://orcid.org/0000-0002-4775-354X
  • Lindinês Coleta https://orcid.org/0000-0002-0183-5654
  • Thiago Velanga https://orcid.org/0000-0001-7788-5212

DOI:

https://doi.org/10.12775/TMNA.2024.041

Słowa kluczowe

Kahae-Salem-Zygmund inequality, multipolynomials, multilinear mappings, homogeneous polynomials

Abstrakt

Some classical and recent Kahane-Salem-Zygmund inequalities developed into several contexts are extended to multipolynomials. The study compares such extensions to each other to comprehend which of them yields the smallest norm for the associated function. Applications to the multilinear and polynomial scenarios are provided. For instance, a polynomial version of \cite[Corollary 1.2]{pelrap} is given, in which the constants are asymptotically bounded by $1$.

Bibliografia

N. Albuquerque, F. Bayart, D. Pellegrino and J.B. Seoane-Sepúlveda, Sharp generalizations of the multilinear Bohnenblust–Hille inequality, J. Funct. Anal. 266 (2014), no. 6, 3726–3740.

N. Albuquerque, F. Bayart, D. Pellegrino and J.B. Seoane-Sepúlveda, Optimal Hardy–Littlewood type inequalities for polynomials and multilinear operators, Israel J. Math. 211 (2016), no. 1, 197–220.

N. Albuquerque and L. Rezende, Asymptotic estimates for unimodular multilinear forms with small norms on sequence spaces, Bull. Braz. Math. Soc. (N.S.) 52 (2021), no. 1, 23–39.

N. Alon and J.H. Spencer, The Probabilistic Method, fourth edition, Wiley Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2016. xiv+375 pp.

G. Araújo and D. Pellegrino, A Gale–Berlekamp permutation-switching problem in higher dimensions, European J. Combin. 77 (2019), 17–30.

F. Bayart, Maximum modulus of random polynomials, Quart. J. Math. 63 (2012), no. 1, 21–39.

H.P. Boas, The football player and the infinite series, Notices Amer. Math. Soc. 44 (1997), no. 11, 1430–1435.

H.P. Boas, Majorant series, Several Complex Variables (Seoul, 1998), J. Korean Math. Soc. 37 (2000), no. 2, 321–337.

I. Chernega and A. Zagorodnyuk, Generalization of the polarization formula for nonhomogeneous polynomials and analytic mappings on Banach spaces, Topology 48 (2009), no. 2–4, 197–202.

A. Defant and M. Mastylo, Aspects of the Kahane–Salem–Zygmund inequalities in Banach spaces, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat. RACSAM 117 (2023), no. 1, paper no. 44, 40 pp.

S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer Monographs in Mathematics, Springer–Verlag London, Ltd., London, 1999, xvi+543 pp.

M. Mastylo and R. Szwedek, Kahane–Salem–Zygmund polynomial inequalities via Rademacher processes, J. Funct. Anal. 272 (2017), no. 11, 4483–4512.

J. Mujica, Complex Analysis in Banach Spaces, Dover Publication, Inc., New York, 2010.

D. Pellegrino, D. Serrano-Rodrı́guez and J. Silva, On unimodular multilinear forms with small norms on sequence spaces, Linear Algebra Appl. 595 (2020), 24–32.

D. Pellegrino and A. Raposo Jr., Constants of the Kahane–Salem–Zygmund inequality asymptotically bounded by 1, J. Funct. Anal. 282 (2022), no. 2, paper no. 109293, 21 pp.

D. Tomaz, Hardy–Littlewood inequalities for multipolynomials, Adv. Oper. Theory 4 (2019), no. 3, 688–697.

T. Velanga, Ideals of polynomials between Banach spaces revisited, Linear Multilinear Algebra 66 (2018), no. 11, 2328–2348.

Online First Articles

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2025-06-14

Jak cytować

1.
ALBUQUERQUE, Nacib Gurgel, COLETA, Lindinês & VELANGA, Thiago. On multipolynomial extensions of Kahae-Salem-Zygmund inequality and applications. Topological Methods in Nonlinear Analysis [online]. 14 czerwiec 2025, s. 1–12. [udostępniono 6.7.2025]. DOI 10.12775/TMNA.2024.041.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Online First Articles

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa