Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On a weighted problem of p-biharmonic type in the unit ball of R^N with exponential growth non linearity
  • Strona domowa
  • /
  • On a weighted problem of p-biharmonic type in the unit ball of R^N with exponential growth non linearity
  1. Strona domowa /
  2. Archiwum /
  3. Online First Articles /
  4. Articles

On a weighted problem of p-biharmonic type in the unit ball of R^N with exponential growth non linearity

Autor

  • Rached Jaidane https://orcid.org/0000-0001-7241-6847

DOI:

https://doi.org/10.12775/TMNA.2024.042

Słowa kluczowe

Adam's inequality, nonlinearity of exponential growth, mountain pass method, compactness level, Nehari manifold

Abstrakt

In this paper, we are concerned with the existence of a ground state solution for a logarithmic weighted p-biharmonic equation under Dirichlet boundary conditions in the unit ball $B$ of $\mathbb{R}^{N}$. The reaction term of the equation is assumed to have exponential growth, in view of Adams' type inequalities. It is proved that there is a ground state solution using min-max techniques and the Nehari method. The associated energy functional loses compactness at a certain level. An appropriate asymptotic condition allows us to bypass the non-compactness levels of the functional.

Bibliografia

I. Abid, S. Baraket and R. Jaidane, On a weighted elliptic equation of N-Kirchhoff type, Demonstr. Math. 55 (2022), 634–657, DOI: 10.1515/dema-2022-0156.

D.R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385–398.

A. Adimurthi, Positive solutions of the semilinear Dirichlet problem with critical growth in the unit disc in R2 , Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 49–73.

A. Adimurthi, Existence results for the semilinear Dirichlet problem with critical growth for the n-Laplacian, Houston J. Math. 7 (1991), 285–298.

A. Ambrosetti and P.H. Rabionowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973), 349–381.

L.E. Andersson, T. Elfving and G.H. Golub, Solution of biharmonic equations with application to radar imaging, J. Comp. Appl. Math. 94 (1998), no. 2, 153–180.

S. Baraket and R. Jaidane, Non-autonomous weighted elliptic equations with double exponential growth, An. Ştinţ. Univ. “Ovidius” Constanţa Ser. Mat. 29 (2021), 33–66.

E. Berchio, F. Gazzola and T. Weth, Critical growth biharmonic elliptic problems under Steklov-type boundary conditions, Adv. Differential Equations 12 (2007), 381–406.

H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010.

M. Calanchi, Some weighted inequalities of Trudinger–Moser type, Analysis and Topology in Nonlinear Differential Equations (D. de Figueiredo, J. do Ó, C. Tomei, eds), Progress in Nonlinear Differential Equations and Their Applications, vol. 85, Birkhäuser, 2014, pp. 163–174.

M. Calanchi and B. Ruf, On a Trudinger–Moser type inequalities with logarithmic weights, J. Differential Equations 3 (2015), 258–263.

M. Calanchi and B. Ruf, Trudinger–Moser type inequalities with logarithmic weights in dimension N , Nonlinear Anal. Ser. A 121 (2015), 403–411.

M. Calanchi and B. Ruf, Weighted Trudinger–Moser inequalities and applications, Bulletin of the South Ural State University, Ser. Mathematical Modelling, Programming and Computer Software 3 (2015), 42–55.

M. Calanchi, B. Ruf and F. Sani, Elliptic equations in dimension 2 with double exponential nonlinearities, NoDea Nonlinear Differential Equations Appl. 24 (2017), Art. 29.

L. Chen, J. Li, G. Lu and C. Zhang, Sharpened Adams inequality and ground state solutions to the bi-Laplacian equation in R4 , Adv. Nonlinear Stud. 18 (2018), no. 3, 429–452.

L. Chen, G. Lu, Q.Yang and M. Zhu, Sharp critical and subcritical trace Trudinger–Moser and Adams inequalities on the upper half-spaces, J. Geom. Anal. 32 (2022), no. 7, paper no. 198, 37 pp.

L. Chen, L. Lu and M. Zhu, Ground states of bi-harmonic equations with critical exponential growth involving constant and trapping potentials, Calc. Var. Partial Differential Equations 59 (2020), 59–185.

L. Chen, G. Lu and M. Zhu, Existence and nonexistence of extremals for critical Adams inequalities in R4 and Trudinger–Moser inequalities in R2 , Adv. Math. 368 (2020), 107143, 61 pp.

L. Chen, G. Lu and M. Zhu, Ground states of bi-harmonic equations with critical exponential growth involving constant and trapping potentials, Calc. Var. Partial Differential Equations 59 (2020), no. 6, paper no. 185, 38 pp.

L. Chen, G. Lu and M. Zhu, Sharp Trudinger–Moser inequality and ground state solutions to quasi-linear Schrödinger equations with degenerate potentials in Rn , Adv. Nonlinear Stud. 21 (2021), no. 4, 733–749.

L. Chen, G. Lu and M. Zhu, Existence and non-existence of extremals for critical Adams inequality in any even dimension, J. Geom. Anal. 32(2022), paper no. 243.

L. Chen, G. Lu and M. Zhu, Existence and non-existence of ground states of bi-harmonic equations involving constant and degenerate Rabinowitz potentials, Calc. Var. Partial Differential Equations 62 (2023), no. 2, paper no. 37, 29 pp.

L. Chen, G. Lu and M. Zhu, Existence of extremals for Trudinger–Moser inequalities involved with a trapping potential, Calc. Var. Partial Differential Equations 62 (2023), no. 5, paper no. 150, 35 pp.

L. Chen, G. Lu and M. Zhu, Least energy solutions to quasilinear subelliptic equations with constant and degenerate potentials on the Heisenberg group, Proc. Lond. Math. Soc. (3) 126 (2023), no. 2, 518–555.

L. Chen, B. Wang and M. Zhu, Improved fractional Trudinger–Moser inequalities on bounded intervals and the existence of their extremals, Adv. Nonlinear Stud. 23 (2023), no. 1, paper no. 20220067, 17 pp.

R. Chetouane and R. Jaidane, Ground state solutions for weighted N -Laplacian problem with exponential nonlinear growth, Bull. Belg. Math. Soc. Simon Stevin 29 (2022), no. 1, 37–61, DOI: 10.36045/j.bbms.211020.

C.P. Danet, Two maximum principles for a nonlinear fourth order equation from thin plate theory, Electron. J. Qual. Theory Differ. Equ. 31 (2014), 1–9.

S. Deng, T. Hu and C. Tang, N -Laplacian problems with critical double exponential nonlinearities, Discrete Contin. Dyn. Syst. 41 (2021), 987–1003.

P. Drabek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, Berlin, 1997.

B. Dridi, Elliptic problem involving logarithmic weight under exponential nonlinearities growth, Math. Nachr. 296 (2023), no. 12, 5551–5568.

B. Dridi and R. Jaidane, Existence solutions for a weighted biharmonic equation with critical exponential growth, Mediterr. J. Math. 20 (2023), article no. 102.

D.E. Edmunds, D. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal. 112 (1990), 269–289.

A. Ferrero, G. Warnault, On a solutions of second and fourth order elliptic with power type nonlinearities, Nonlinear Anal. 70 (2009), 2889–2902.

D.G. Figueiblacko, O.H. Miyagaki and B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), no. 2, 139–153.

F. Gazzola, H.-Ch. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations 18 (2003), 117–143.

[36] R. Jaidane, Weighted fourth order equation of Kirchhoff type in dimension 4 with nonlinear exponential growth, Topol. Methods Nonlinear Anal. 61 (2023), no. 2, 889–916, DOI: 10.12775/TMNA.2023.005.

C. Ji and A. Szulkin, A logarithmic Schrödinger equation with asymptotic conditions on the potential, J. Math. Anal. Appl. 437 (2016), no. 1, 241–254.

O. Kavian, Introduction à la Théorie des Points Critiques Springer–Verlag, Berlin, 1991.

A. Kufner, Weighted Sobolev spaces, John Wiley and Sons Ltd., 1985.

N. Lam and G. Lu, The Moser–Trudinger and Adams inequalities and elliptic and subelliptic equations with nonlinearity of exponential growth, Recent Development in Geometry and Analysis, Advanced Lectures in Mathematics, vol. 23, 2012, pp. 179–251.

N. Lam and G. Lu, Existence of nontrivial solutions to polyharmonic equations with subcritical and criticalexponential growth, Discrete Contin. Dyn. Syst. 32 (2012), no. 6, 2187–2205.

N. Lam and G. Lu, Sharp Adams type inequalities in Sobolev spaces W m,n/m (Rn ) for arbitrary integer m, J. Differential Equations 253 (2012), 1143–1171.

N. Lam and G. Lu, N -Laplacian equations in RN with subcritical and critical growth without the Ambrosetti–Rabinowitz condition, Adv. Nonlinear Stud. 13 (2013), no. 2, 289–308.

N. Lam and G. Lu, A new approach to sharp Trudinger–Moser and Adams type inequalities: a rearrangement-free argument, J. Differential Equations 255 (2013), no. 3, 298–325.

N. Lam and G. Lu, Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti–Rabinowitz condition, J. Geom. Anal. 24 (2014), 118–143.

N. Lam and G. Lu, Existence and multiplicity of solutions to equations of N -Laplacian type with critical exponential growth in RN , J. Funct. Anal. 262 (2012), 1132–1165.

D. Li and M. Zhu, Concentration-compactness principle associated with Adams’ inequality in Lorentz–Sobolev space, Adv. Nonlinear Stud. 22 (2022), no. 1, 711–724.

P.L. Lions, The concentration-compactness principle in the calculus of variations, Part 1, Rev. Mat. Iberoam. 11 (1985), 185–201.

O.H. Miyagaki and M.A.S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations 245 (2008), 3628–3638.

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/1971), 1077–1092.

T.G. Myers, Thin films with high surface tension, SIAM Rev. 40 (1998), no. 3, 441–462.

S.I. Pohozaev, The Sobolev embedding in the case pl = n, Proc. Tech. Sci. Conf. on Adv. Sci. Research 1964–1965, Mathematics Section (Moskov. Energet. Inst., Moscow), (1965), 158–170.

B. Ruf and F. Sani, Sharp Adams-type inequalities in RN , Trans. Amer. Math. Soc. 365 (2013), 645–670.

F. Sani, A biharmonic equation in R4 involving nonlinearities with critical exponential growth, Comm. Pure Appl. Anal. 12 (2013), 405–428.

S. Tian, Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity, J. Math. Anal. Appl. 454 (2017), no. 2, 816–828.

N.S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.

L. Wang and M. Zhu, Adams’ inequality with logarithm weight in R4 , Proc. Amer. Math. Soc. 149 (2021), 3463–3472.

M. Willem, Minimax Theorem, Birkhäuser, Boston, 1996.

V.I. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR 138 (1961), 805–808.

C. Zhang, Concentration-compactness principle for Trudinger–Moser inequalities with logarithmic weights and their applications, Nonlinear Anal. 197 (2020), 111845.

C. Zhang and L. Chen, Concentration-compactness principle of singular Trudinger–Moser inequalities in Rn and n-Laplace equations, Adv. Nonlinear Stud. 18 (2018), no. 3, 567–585.

C. Zhang, J. Li and L. Chen, Ground state solutions of polyharmonic equations with potentials of positive low bound, Pacific J. Math. 305 (2020), no. 1, 353–384.

H. Zhao and M. Zhu, Critical and supercritical Adams’ inequalities with logarithmic weights, Mediterr. J. Math. 20 (2023), 313, DOI: 10.1007/s00009-023-02520-0.

Online First Articles

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2025-04-18

Jak cytować

1.
JAIDANE, Rached. On a weighted problem of p-biharmonic type in the unit ball of R^N with exponential growth non linearity. Topological Methods in Nonlinear Analysis [online]. 18 kwiecień 2025, s. 1–28. [udostępniono 4.7.2025]. DOI 10.12775/TMNA.2024.042.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Online First Articles

Dział

Articles

Licencja

Prawa autorskie (c) 2025 Rached Jaidane

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa