Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Positive solutions with a singular set for semilinear parabolic equations
  • Strona domowa
  • /
  • Positive solutions with a singular set for semilinear parabolic equations
  1. Strona domowa /
  2. Archiwum /
  3. Vol 65, No 1 (March 2025) /
  4. Articles

Positive solutions with a singular set for semilinear parabolic equations

Autor

  • Sidi Hamidou Jah https://orcid.org/0000-0001-8024-9284
  • Lotfi Riahi https://orcid.org/0000-0003-1250-1606

DOI:

https://doi.org/10.12775/TMNA.2024.039

Słowa kluczowe

Partial differential equations, semilinear parabolic equation, semilinear elliptic equation, Dirichlet boundary condition, positive solution, singular solution, Kato class, asymptotic behavior

Abstrakt

We study the existence and large time behavior of positive solutions for the semilinear parabolic equation $\frac{\partial u}{\partial t}(x,t) =\Delta u(x,t)+ V(x)u(x,t) +f(x,u(x,t))$ with initial Dirichlet boundary conditions on $(D\setminus E)\times (0,\infty)$, where $D$ is a bounded Lipschitz domain in $\mathbb{R}^n$, $ n\geq 3$, $E$ is a prescribed compact set of $D$, and $V$ and $f$ are real-valued functions satisfying some general conditions. Our results cover various types of nonlinearities and extend known results proved for the power nonlinearity $f(x,u)=W(x)u^p$ and a singular one-point set $E$.

Bibliografia

H. Aikawa, Boundary Harnack principle and Martin boundary for a uniform domain, J. Math. Soc. Japan 53 (2001), no. 1, 119–145.

H. Brézis, L.A. Peletier and D. Terman, A very singular solution of the heat equation with absorption, Arch. Ration. Mech. Anal. 95 (1986), 185–209.

X. Chen, Y. Qi and M. Wang, Classification of singular solutions of porous medium equations with absorption, Proc. Roy. Soc. Edinburgh Ser. A 135 (2005), 563–584.

X. Chen, Y. Qi and M. Wang, Singular solutions of parabolic p-Laplacian with absorption, Trans. Amer. Math. Soc. 359 (2007), 5653–5668.

E.B. Fabes and M.V. Safonov, Behavior near the boundary of positive solutions of second order parabolic equations, J. Fourier Anal. Appl. 3 (1997), 871–882.

K. Hirata, Positive solutions with a time-independent boundary singularity of semilinear heat equations in bounded Lipschitz domains, Nonlinear Anal. 134 (2016), 144–163.

K. Hirata and T. Ono, Removable singularities and singular solutions of semilinear elliptic equations, Nonlinear Anal. 105 (2014), 10–23.

S.H. Jah and L. Riahi, Singular solutions for nonlinear elliptic equations on bounded domains, J. Fixed Point Theory Appl. 24 (2022), article no. 6.

S. Kamin, L.A. Peletier and J.L. Vasquez, Classification of singular solutions of a nonlinear heat equation, Duke Math. J. 58 (1989), 601–615.

S.C. Port and C.J. Stone, Brownian Motion and Classical Potential Theory, Academic, New York, 1978.

L. Riahi, Singular solutions for semilinear parabolic equations on nonsmooth domains, J. Math. Anal. Appl. 333 (2007), 604–613.

L. Riahi, Estimates for Dirichlet heat kernels, intrinsic ultracontractivity and expected exit time on Lipschitz domains, Comm. Math. Anal. 15 (2013), no. 1, 115–130.

S. Sato, A singular solution with smooth initial data for a semilinear parabolic equation, Nonlinear Anal. 74 (2011), 1383–1392.

S. Sato and E. Yanagida:, Solutions with moving singularities for a semilinear parabolic equation, J. Differential Equations 246 (2009), 724–748.

S. Sato and E. Yanagida, Forward self-similar solution with a moving singularity for a semilinear parabolic equation, Discrete Contin. Dyn. Syst. 26 (2010), 313–331.

S. Shishkov and L. Véron, Singular solutions of some nonlinear parabolic equations with spatially inhomogeneous absorption, Calc. Var. 33 (2008), 343–375.

Q.S. Zhang and Z. Zhao, Singular solutions of semilinear elliptic and parabolic equations, Math. Ann. 310 (1998), 777–794.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2025-03-31

Jak cytować

1.
JAH, Sidi Hamidou & RIAHI, Lotfi. Positive solutions with a singular set for semilinear parabolic equations. Topological Methods in Nonlinear Analysis [online]. 31 marzec 2025, T. 65, nr 1, s. 265–285. [udostępniono 17.1.2026]. DOI 10.12775/TMNA.2024.039.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 65, No 1 (March 2025)

Dział

Articles

Licencja

Prawa autorskie (c) 2025 Sidi Hamidou Jah, Lotfi Riahi

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa